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is an algebra homomorphism of D(G; x1) into C.
Set

1 —(s
(3.21) ays(kaim) = —xa(kpe™ "
[

Since f = f *dyx; and x(k=') = xu(k) for k € K, for every f € D(G;x1)

As(f) = —;—l ///f(ka,n)xl(k)e(_s+p)t dk dt dn
K —co N

= / flgaus(g) dg
G
- / £(9) / crs(kgk™") dk dg
G K
(3.22) = / £9)Cs(9) dg
G
with
(3.23) o= / 0 (kg™ dk
K

One easily checks that (;; satisfies ;5 = Q’SO, Crexdix; = (s and (5(e) = 1.
Thus (; is a 7;-spherical function. It will be shown in the next section that
any T7;-spherical function is of the form (3.24).

By Remark 2.3, we have

1
(3.24) Cs(g) = EXl(kl)gl,s(at) for g = kikoaiks

so (;, is uniquely determined by its restriction to A.

4. THE DIFFERENTIAL EQUATION FOR THE 7;-SPHERICAL FUNCTIONS

For a subalgebra u of g, let uc denote the complex subalgebra of gc
generated by u. The universal enveloping algebra (i) of uc is considered
as a subalgebra of (g).

The representation 7; of K; induces differentiated representations of the
Lie algebra £, of K; and of the universal enveloping algebra 1(t;) of ())c.
We indicate these representations with the same letter 7;. Let € be the
Lie algebra of K,. Every element Y € £c can be uniquely decomposed as
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Y =YD +Y® with Y¥ € (8)c, j = 1,2. The symbol x; will also be used
for the C-linear map on () defined by

Xi(H - Y) =t [ (D) - (X))

for Yi,...,Y, € tc.

The Iwasawa decomposition g = ¥+ a + n gives U(g) = UE)U(a)(n) =
HE) @ U(a) & Ugne. Let P: U(g) — UE) ® U(a) be the corresponding
projection. For s € C, let e; be the C-linear map on i(a) defined by

es(L™) .= (—1)"(s + p)" for every integer m > 0 .

Define p;s: U(g) — C to be the composition p;; := (Zzl',Xl & es> o P, where
as before d; = dim ;.

4.1. PROPOSITION. Let (s be the function defined by Formula (3.23).
For every D € (g)X and g€ G

(4.25) C,s(g; D) = p1s(D).5(g) -

Proof. Because of Theorem 3.1, (;; 1s an eigenfunction of every
D € $(g)X. The eigenvalue corresponding to D € U(g)X is C1.s(e; D)
because (;s(¢) = 1. Since D is K-invariant, (;s(e;D) = oy4(e; D). Write
D =) yixi+ Zjnj with y; € U(¥), x; € U(a) and n; € Wg)nc. Then
ap(e; D) = ) . oy s(e; yix;) because agg(gn) = oys(g) for g € G and n € N.
To compute oy s(e;y;x;), assume without loss of generality that x; = L™ and
that y; = Y;---Y, with ¥; € £. The definition of oy, gives

1
oy s(e; yixi) = ZZ;XI()’i)(_l)m(S +p)" = prsixi) -

Thus Cl,s(e;D) - pl,s(D)- L]

Let §(D) denote the 7;-radial component on A" := {a, : t > 0} of the
differential operator D € $i(g) ; that is, the unique differential operator on A
satisfying

flas; (D)) = f(ar; D)

for all f € D(G;x;) and t > 0. Proposition 4.1 immediately implies

4.2. COROLLARY. (g is an eigenfunction of the 1;-radial component on
AT of every K -invariant differential operator on G : :

(4.26) Grs(ar 61(D)) = pui,s(D)G1,s(ay) (D € W), 1>0).
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We now write (4.26) explicitly in the case D is the Casimir operator
w of g. Let B denote the Cartan-Killing form of g¢ (= sp(1 +n,C)). If
X,Y € sp(1,n), then

B(X,Y) =4(n+2) N tr(XY)

where R denotes the quaternionic real part: Fqg = qzﬂ for g € H. The bilinear
form By(X,Y) := —B(X,0Y) is an inner product on g. Orthonormality will
be considered with respect to Byg.

Let {Z}L, (m:=2n"+n) and {Xg;}/2, (6 € {e,2a}) be orthonormal
bases in m and in gg respectively. Define X_g; = —0(Xg;) for § € {o,2a}
and j = 1,...,mg. Then {X_m}]'.fl is an orthonormal basis for g_g, and
B(Xg,i,X_p,) = 0;. Moreover, for all j =1,...,mg, Hg := [Xg;,X_p,] is
the unique element of a satisfying B(Hg,L) = 6(L) ie.

1 if =«
2 if f=2a.

o hg
P 8 +2)

L with h@ = {

Set Hy := ﬁ, a unit vector in a. Then, if Dg; := XpiX-pj+X_p;iXp;,
we have (cf. [GaV], p.132)

mg
(4.27) w=wn+H+ > Y Dp;
Be{a,2a} j=1
fnﬁ
=wn TH A+ ) omgHg+2 Y Y XX g,
Be{a,2a} pe{a,2a} j=1
where
(4.28) Wy = — ZZJ2 .
Hence v
2
B(L,L)
Be{a,2a}
from which we conclude
+p)* =2 2_ 2
(429)  prsw) = prs(wm) + (s+p?—20(6+p) 1 s2—p

B(L,L) = EXI(Wm) “+ 8(n 1 2 .
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To compute §;(w) we use Formula (4.27). Observe first that if f € D(G; x;)
and Y € U(¥), then f(a,;Y) = dilXZ(Y). Hence 6,(Y) = dilxl(Y). In particular,

1
(4.30) b(wm) = EXz(wm)-
l
Write
(4.31) XBJZYQJ—JFPIBJ with YﬂJGE,PﬁJGD.

A standard computation (cf. e.g. [W2], p.278) then gives for f € D(G; x))
and > 0

P % . 4 1 —cosh(z5(L)) 2
flai; Dg ;) = coth(tG(L))f (ar; Hp) + 4 s xi(Yp,; ) (a)

1.e.

N i 1 — cosh(zG(L)) 2
(4.32) 61(Dg,j) = coth(tB(L))Hpg + 4 Smb2BD) x1(Yg;7).

Notice that x;(Y3 ) =0 forall j=1,...,mq.

For h =i,j,k, let Y, denote the tangent vector at e to the 1-parameter
subgroup ¢ +— cost + hsint in Sp(l). Explicit choices of the orthonormal
bases in m and g, prove that

3
1
433) ) =-2) xi¥3,) = 3D > i (v’
h

€{ij,k}

J=1

As shown in [T1], p.381, there exists an orthonormal basis {v,},__, in
V; such that

T1(Y)v, = —2ipv,

W
Ti(Yj)vp = =10, 1 Vpt

l [
TI(Yi)Up = =01 Upt1 + QpUp—1

where
ol = [(I+p)I —p + DIV

It follows that for h =1i,j,k
) 4
(4.34) tr [(Ys)’] = —§1(1+ DRI+ 1).

Identify A with R and L with % under the isomorphism ¢ — exp(tL) = a;.
Formulas (4.27), (4.30) and (4.32)—(4.34) then prove the following proposition.
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4.3. PROPOSITION. Let 7; be an irreducible unitary representation of Ki
of dimension 21+ 1. Then

|. The 7-radial component of the Casimir operator w is

d? d 4l(l+ 1)
- - thz+3 tanht]— +————+4l(I+1) ¢ .
o) 8(n+2) { dt? +(@n—1)coth i+t ]dt cosh? ¢ }
2. For every s € C
(4.35) pis(w) = [41( + 1) + s* — p*].

8(n + 2)
3. For every s € C, the function (4(t) := (s5(ar) satisfies the differential

equation on (0, +00)

411+ 1
@436) '+ [(4n—)cotht+3tanh iyl + Lt D

2 )
u=(s"—pHu.
cosh” ¢

The substitution v(r) = (cosh?)~?u(¢) transforms the differential equation
(4.36) into the Jacobi differential equation (cf. [K2], p.6)

(4.37) v + [(4n — 1) cotht + (4] + 3) tanh 1" = (s* — p v

with parameters « =2n—1 and §=2[+1. Here p:=a+ 3+ 1=p+2L
The Jacobi function

(4.38) Gn=12AED(p) = F (p ;L o 4 > > 2n; — sinh? z)
=F (p;—s + 1, f)—%—{ +l;2n;—sinh2t>

is the unique solution v to (4.37) satisfying v(0) =1, v'(0) = 0. (In (4.38),
F(a,b;c;z) denotes the analytic branch on C\ [1,00) of the hypergeometric
function.)

The 7;-spherical function (; is therefore explicitly given by

(4.39) Gs(0) = Gsla) = (cosh ) ¢ M0 ()
= (cosh ) F (,0 ;_ ° + 1, & ; > + I; 2n; — sinh? t) :
Formula (4.39) has been previously determined by Takahaski ([T2], Formula
(7), p.225) by direct integration of (3.23), using the following expression of
x; in terms of Gegenbauer polynomials:
sin ((21 + 1Y)
sin ¢
Formula (4.35) shows that p; ;(w) 1s an even function of s which assumes

arbitrary complex values as s varies in C. The following corollary can
therefore be deduced from Theorem 3.1 and Proposition 4.3.

(4.40) xi(ki) = Cy; (Rky) =

if Rk = cosy.
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4.4. COROLLARY. The Tj-spherical functions are exactly the functions
{¢s : s € C} given by Formulas (3.24) and (4.39). Further, (., satisfies
Cs(g) = Q,S(g“l) for all g € G. Moreover, ;s = (¢ if and only if s = +s'.

The functional equation (3.15) with ¢g; = a; and g, = a, becomes (cf.
[T2], Théoreme 1, p.227)

(4.41) Cr,s(DC,s(T) = / Ki(t, 7, u)Gr,s(W)Au) du
0

where A is as in (1.7) and the kernel K(z,7,u) is defined as follows. Set

cosh? ¢ + cosh? 7 +cosh?u — 1

2 coshzcosh 7 cosh u
Then

272PT'(2n) (coshtcosh T cosh u)?" 3

3
. . . (1-B*"~2
1 n—
v/7I'(2n — 3) (sinhtsinh 7 sinh u)*~2

4.42) Kit,7,u) =

11
« F(2n+21,2n~21—2;2n— 5150 —B))

if B <1, and Ki(t,7,u) := 0 if B > 1. Using (4.39) and Formula (7.11)
in [K2], one can prove that (4.41) holds also outside our group-theoretical
setting for all / € R satisfying 2n—1 > 21 > 0.

5. 'THE POSITIVE DEFINITE 7;-SPHERICAL FUNCTIONS

A continuous function ¢ on a locally compact group G is said to be
positive definite if for every f € C.(G)

/ / YT dedy > 0.
G G

In this section we establish which among the (;; are positive definite.

Let us first introduce some notation and recall some definitions. Let G be
a semisimple Lie group with finite center, and let K be a maximal compact
subgroup of G. g and £ (C g) are the Lie algebras of G and K, respectively.
A (strongly continuous) representation 7 of G on a Banach space H is
denoted by (7T,H). We may simply speak of the representation 7T if H is
understood. Irreducibility for 7 always means topological irreducibility (= no
closed proper invariant subspaces). Let K denote the set of equivalence classes
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