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is an algebra homomorphism of T)(G;xù int0 C

Set

(3.21) ahs(ka,n)jXi(k)e~(s+p)t.

Since / / * dlXtand Xi(k') %,(*)for for every / G

OO

xs(f)1 JJJf(katn)xi(k)e(-s+p)<dkdtdn

K -oo N

/ f(g)ui,s(9) d9
JG

[ fig) [ ahs(kgk~l) dk dg
JG JK

(3.22) [f(g)QMd9
G

with

(3.23) Ci,s := / ahs(kgk~l) dk.
Jk

One easily checks that satisfies 0,/. Cz,s*^zXz — Co anc* C/,sO?) 1
•

Thus 0;, is a 77-spherical function. It will be shown in the next section that

any 77-spherical function is of the form (3.24).

By Remark 2.3, we have

(3.24) CoG?) TX/(^i)Cz>5(ûf) for 9 kik2atk'2
«Z

so is uniquely determined by its restriction to A.

4. The differential equation for the 77 -spherical functions

For a subalgebra u of g, let Uc denote the complex subalgebra of gc
generated by u. The universal enveloping algebra il(u) of Uc is considered

as a subalgebra of 11(g).

The representation 77 of K\ induces differentiated representations of the

Lie algebra of K\ and of the universal enveloping algebra il(£j) of (fi)c-
We indicate these representations with the same letter 77. Let l2 be the

Lie algebra of K2. Every element F G tc can t>e uniquely decomposed as
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Y 7(1) + Y{1) with Y® G (ïj)c, j 1,2. The symbol x/ will also be used

for the C-linear map on H(£) defined by

MYm):=tr[rK^1))---r/(yi1))]

for Yx,...,Ymetc.
The Iwasawa decomposition g ï -j- a + n gives 11(g) ll(£)ll(a)ll(n)

U(£) ® IX(a) ® il(g)nc- Let P: 11(g) —> U(£) ® 11(a) be the corresponding
projection. For s G C, let es be the C -linear map on il(a) defined by

es(Lm) := (-l)m(^ + p)m for every integer m > 0

Define p//: 11(g) —> C to be the composition pijS := °P, where

as before di dim 77.

4.1. PROPOSITION. Let £/,i Pe Pz£ function defined by Formula (3.23).
For every D G 11(g)* g G G

(4.25) 0 ,s(9\D)=PlAD)Çl,s(9)'

Proof. Because of Theorem 3.1, QiS is an eigenfunction of every
D G 11(g)*. The eigenvalue corresponding to D G 11(g)* is Qffe\D)
because QyS(e) 1. Since D is K-invariant, Q}S(e; D) a^s(e;D). Write
D Ysiym + ^jnJ yî ^ -L' 11(a) and n,- G 11(g)ne- Then

aLs(e; D) because aiffgn) a//p) for g G G and n G N.
To compute op5(<?;ypc;), assume without loss of generality that xz- Lm/ and

that yi lj • • • Ym with Yj L The definition of a/>iS gives

G/,,(^;y/X/) -^-X/(y/)(-ir(^ + p)m Pi,s(yiXi) •

a/

Thus Cz,j(^; L>) pi,s(D).

Let 6i(D) denote the r\ -radial component on A+ := {at : t > 0} of the

differential operator D G 11(g) ; that is, the unique differential operator on A+

satisfying

f{at'MD))=f(at\D)
for all / G D(G;x/) and * > 0. Proposition 4.1 immediately implies

4.2. COROLLARY. is an eigenfunction of the ri-radial component on
A+ of every K-invariant differential operator on G :

(4.26) o>4 VÖ)) PiAD(De 11(0)*, >0).
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We now write (4.26) explicitly in the case D is the Casimir operator

uj of g. Let B denote the Cartan-Killing form of gc (— <sp(l +«, C)). If
X, Y G #p(l, n), then

B(X, Y) 4(n + 2) 5R tr(X7)

where 5ft denotes the quaternionic real part : $iq ^ for q G H. The bilinear
form Bo(X,Y) := —B(X.6Y) is an inner product on g. Orthonormality will
be considered with respect to Be.

Let {Zj}JLl (m := 2ft2 + /î) and {Xpj}J^x (ß G {a, 2a}) be orthonormal
bases in m and in g^ respectively. Define X-pj —0(Xpj) for ß G {a, 2a}
and j l,..s,mp. Then {X-pj}^ is an orthonormal basis for Q-p, and

BiXp^X-pj) Moreover, for all ; =j 1,..., mß, Hp := [X^X^-] is
the unique element of a satisfying B(Hp,L) /3(L), i.e.

Ä/3 1 if ß a^ —J1— L with hp — s
8(rc + 2) \ 2 if ß 2a

Set Hi'=véw)' a unit vector in a- Then' if '=
we have (cf. [GaV], p. 132)

mL3

(4.27) lü — Lom + H\ +
/3G{o;,2a} 7=1

mß

ujm+H\+ mßHß + 2 ^
ße{a,2a} /5G{a,2a} 7=1

where

(4-28) -V. : ' VZ•2

1

7=1

Hence #

£ 2pL
^

/3{a,2a} 5(L'L)

from which we conclude

(4.29) „„M „,„<•*.) +
(J + ^:2"7 + ") I»(w.) + I-^L^(L, L) dl 8(72 + 2)
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To compute <5/(cu) we use Formula (4.27). Observe first that if / G D(G; xi)
and Y G il(î), then f(at\ Y) — jfXi(Y). Hence 6i(Y) jtXi(X)- In particular,

(4-30) ôi(wm) 7xi(wm)
•

di

Write

(4.31) Xßj Yßj + PßJ with Yßj

A standard computation (cf. e.g. [W2], p. 278) then gives for / G D(G;xi)
and t > 0

m-Dßj)coth + 4
1

T ^ Xi(YßJ2)f(at)
di smh (tß(L))

i.e.

(4.32) öi(Dßj)coWß(L))H0 +
1

T X/(^/) •

<7/ smh'(tß(L))

Notice that Xi(^aj) — 0 for all j 1,..., raa.
For h ij,k, let 17 denote the tangent vector at e to the 1-parameter

subgroup t h-> cost + h sin t in Sp(l). Explicit choices of the orthonormal
bases in m and g2a prove that

3
j

(4.33) xM~2 ^ XiWLj) ~
8fa 2) J] tr [rKF/V] •

As shown in [Tl], p. 381, there exists an orthonormal basis {vp}lp=_l in
Vi such that

ri(Yi)vp -2 ipvp

n(Yj)vp -ialp+lVp+x

ri(Yk)vp -alp+lvp+i + alpvp-X

where

alp:=[(l + p)(l~p +l)]1/a.
It follows that for /z ij, fc

(4.34) tr [r,(i-A)2] -—/</ + 1)(2/ + 1).

Identify A with R and L with ~ under the isomorphism t i—> exp(fL) at.
Formulas (4.27), (4.30) and (4.32)-(4.34) then prove the following proposition.
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4.3. PROPOSITION. Let ti be an irreducible unitary representation of K\

)f dimension 21 + 1. Then

1. The n-radial component of the Casimir operator uj is

S,M lA^{^+[<4"-1,co,h'+3'anl'15+^7+4'('+1)} '

2. For every s G C

(4.35) p,,s(u)
8(w

*+
2)

[4/(/ + 1) + - P2] •

3. For every s G C, f/io function 0,.v(0 C/,s(ßr) satisfies the differential

equation on (0, +oo)
4/(/ T 1) 2 2\

(4.36) m + [(4n - 1) coth t + 3 tanh t]u 3 — u (s — p u
cosh £

The substitution u(0 (cosh0~2/w(0 transforms the differential equation

(4.36) into the Jacobi differential equation (cf. [K2], p. 6)

(4.37) v" + [(An - 1) coth t + (4/ + 3) tanh t)v' (s2 - p2)^

with parameters a 2n — I and ß 2/ + 1. Here p := a A- ß A- 1 p + 2/.

The Jacobi function

(4.38) C~I,2,+1)(0:~ sinh2 r)

=F + —y + /; 2«; - sinh2 f

is the unique solution v to (4.37) satisfying v(0) 1, #(0) 0. (In (4.38),

F(a,b;c;z) denotes the analytic branch on C\[l,oo) of the hypergeometric

function.)
The r/-spherical function QiS is therefore explicitly given by

(4.39) Cifft) := Qffat) (cosht)21 ff2n'l^l\t)
(cosh t)21F ^ S

+ /, —— — + /; 2n; — sinh2 t
2 ' 2

Formula (4.39) has been previously determined by Takahaski ([T2], Formula

(7), p. 225) by direct integration of (3.23), using the following expression of
Xi in terms of Gegenbauer polynomials :

(4.40) xiif l) — C\i (^l)
s^n

if « cos
sin v

Formula (4.35) shows that piffu) is an even function of s which assumes

arbitrary complex values as s varies in C. The following corollary can
therefore be deduced from Theorem 3.1 and Proposition 4.3.
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4.4. COROLLARY. The ri -spherical functions are exactly the functions
{0,5 • s G C} given by Formulas (3.24) and (4.39). Further, 0,5 satisfies

0,s(g) Q,s(g~l) for all g G G. Moreover, 0,5 Ci,s' if and only if s ±s'.

The functional equation (3.15) with g\ at and g2 — aT becomes (cf.
[T2], Théorème 1, p. 227)

poo
(4.41) Ci,s(f)Ci,s(r) / Ki(t, r, u)CijS(u)A(u) du

J o

where À is as in (1.7) and the kernel Kft.r.u) is defined as follows. Set

cosh2 t + cosh2 r + cosh2 u — 1

B —
2 cosh t cosh r cosh u

Then

(4.42) W,r,u):=
(cosh'crahTCOsh..)*-'

ï/7rr(2?2 — I (sinh t sinh r sinh u)4n~2

x F+ 2n2; 2« — 17(1 _ ß))

if 5 < 1, and Ki(t,t,u) :=0 if B>1. Using (4.39) and Formula (7.11)
in [K2], one can prove that (4.41) holds also outside our group-theoretical
setting for all / G R satisfying In — 1 > 21 > 0.

5. The positive definite tx -spherical functions

A continuous function on a locally compact group G is said to be

positive definite if for every / G Cc(G)

J J C(x~0.

G G

In this section we establish which among the Q,s are positive definite.

Let us first introduce some notation and recall some definitions. Let G be

a semisimple Lie group with finite center, and let K be a maximal compact
subgroup of G. $ and (C g) are the Lie algebras of G and K, respectively.
A (strongly continuous) representation T of G on a Banach space TC is

denoted by (T, T0. We may simply speak of the representation T if TC is

understood. Irreducibility for T always means topological irreducibility no
closed proper invariant subspaces). Let K denote the set of equivalence classes
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