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26 LEI FU

Note that O is a regular morphism defined on U and 0 is a regular
morphism defined on V. Since

O 0(D!, D2) (D\, D2) and 0 O{Dx, D2) (Di, D2)

whenever the left-hand sides are defined, the maps O and 0 induce regular
morphisms O: Un®~l(V) VnS~l(U) and 0: Vne~](U) Un^~l(V).
To show that O and 0 are birational inverses to each other, it is enough to
check that £/n<D-1(V) and yn0_1(f/) are non-empty.

Note that (Di,D2) G U nO_1(V) if and only if (Dl5D2) G U and

,D2) - D\ 4- ttPq) 1, l(m(D\,D2) - Dx +1rP0 - m) 0.

Since m(D\,D2) Di -f D2 — ttPq, the above equations are equivalent to

lm(D2)= 1, /(D2 — m) 0

Applying Lemma 3.3 to the divisor Do 0, we conclude that the set

Vo {D G (X - S)(7r) I /m(D) 0, KD - m) 0}

is open and non-empty. Since (.X — S)(7r) x (Z — S)(7r) is irreducible, the set

Un((X—S)(7Ç} x vb) is also open and non-empty. This set is exactly UD<&~](V).
So D nO_1(V) is non-empty.

Similarly Un0_1(D) is also non-empty. This completes the proof of the

proposition.

4. From birational groups to algebraic groups

Let k be an algebraically closed field, let V be a connected nonsingular

variety over k, and let m: V x V —» V, (a,b) ab be a rational map

satisfying (ab)c a(bc). Assume the rational maps 0(a,b) (a, ab) and

ThyqZ?) (b,ab) are birational. Then there exist open subsets X®, To, Xy
and Lvp in V x V such that O induces an isomorphism X® To and

induces an isomorphism Zy Y\y. Put Z Z<d H To H Zy H

It is convenient to write the formulae for O-1 and VP-1 as $>~l(a,b)
(a,a~lb) and &) (ba~l, a).
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LEMMA 4.1. Replacing y by an open subset, we may assume the two

projections pp. Z V (i 1,2) are surjective.

Proof Note that the two projections pp. V x V —» V, (i 1,2) are flat
since V --> spec(fc) is flat. So the pt are open by [EGA] IV, §2.4.6. Hence

the pi(Z) are open. Let V' pi(Z) Dp2(Z). We claim V' has the property
stated in the lemma. Let C — V — V' and let A (C x V) U (V x C). The

subset X0 of V' x V' corresponding to X<j> is the complement in X$> of
S (X0 fi A) U 0-1(Fo HA). We claim that if the fiber of p\ : X® —> V at

v G V is contained in 5, then v G C. Thus : X<e/ —» V7 is surjective.
Let us prove the claim. Assume (v x V) C S, but v C. We have

(vxV)nX^ C ^CAUO"1^) C (C x V)U(V x OUO^tCx V)UO-1(V x C).

Since V is irreducible, we must have

(v x V)nX0 C C x V, V x C, 0-1(C x V), or 0_1(V x C).

Since v ^ C, we have

(u x V) n X0 ^ C x V, 0_1(C x V).

So

(v x V) n Xo C V x C or 0~l(V x C).

Assume (t# x V) n X0 C V x C. Note that since v g C, we have v G V7.
Hence (u x V) n X$ is not empty. So we have

dim V dim((u x V) H X0) dim(((u x V) H X&) n (V x C))

< dim(u x C) < dim V,

that is, dim V < dim V. This is impossible.
Assume (v x V) n X0 c &"l(V x C). Then ®((y x V) n X0) C V x C.

Since O is birational, we have

dim V dim &((v x V) n X0) dim(&((v x V) n X0) H (V x Q)
< dim(u x C) < dim y,

which is again impossible. So we must have v G C.
Next we show that if the fiber of p2 : X0 -> y at v G y is contained in 5,

then v Ê C, and hence p2: X0 W is surjective.
Assume (V x v) n X0 C S but v £ C. As before we have

(V x ujnXcD c c x y, y x c, o_1(c x v) or o_1(y x c).
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Since v f. C, we have (V x v) H X® (£_ V x C. By counting dimensions,

one can show (V x v) H X® <f_ C x V. Since 0-1(C x V) C C x V, we have

(Vxu)nXo £ 0_1(Cx V). So we can only have (Vxv)ilX0 C <S>~\VxC).
Then we have a rational map

V A (V x t?) OX® V x C -A C,

where tfx) (x.v). This map : V —> C is nothing but * i—» xu and it
is birational. (Its birational inverse is p\xP~lt2, where i%(x) (u,x).) So V
is birational to C. This is impossible since dim V 7^ dimC. So we must have

v G C. This finishes the proof of the surjectivity of P2 : X& -a W.

Similarly p; : —> V' are surjective. Since the fibers of
Pi\ Vx V —» y are irreducible, the projection pp. Z' — X^Y^nX^nYf — V'
is also surjective.

Having replaced V as in Lemma 4.1, we may assume V satisfies the

following properties :

PROPERTY 4.2. There exists an open set Z C V x V such that O,
and x¥~l are defined on Z, the restrictions 0|z and T'lz are open immersions,

and the projections pp. Z V are surjective. Hence for every v G V, the

maps O, O"1, T* and VF_1 are defined at (v.x) and at (x:v), provided x
is generic, i.e. lies in an open set.

LEMMA 4.3. Assume 4.2 holds. Denote the closure of the graph of m in

y x y x y by r. Then the projections piji T —» y x y (1 < i < j < 3) are

open immersions.

Proof. By [EGA] III, §4.4.9, it suffices to show that the maps pV] are

set-theoretically injective. Let 1 be a point of V. The two rational maps
T —> y defined by

(a. b1 c) 1—» (xa)b and (a, b. c) 1—» xc

are equal by the associative law. Let (a.b.c), (a.b.c') G T. Choose a

so that (.xcT)b is defined and (x, c), (x, c') G Z. Then xc (.xa)b xc'

Hence 0(x, c) 0(x, c'). Since O is an open immersion on Z, we have

(jc,c) (x, c'). Hence c — c'. This shows that pn'. T —> y x y is injective.

Similarly one can show the other projections are injective.

We will now expand y to the group we want by glueing translates of V.

Let 5 be a point of y and let Vv be a copy of y thought of as the
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translate Vs {us | v G V}. The subset Ws (V x s x V) D T is closed in

VxsxV=VxV, and the two projections Ws —> V are open immersions
because they are the base extensions of the open immersions pij : T —> V x F
by the base changes V x j —» V x V and s x V —» VxV, respectively. Therefore

Ws defines glueing data and yields a separated scheme V' V \Jws Vs.

LEMMA 4.4. V is an open dense subset of V' and V' satisfies 4.2.

Proof. Since xs is defined for generic xGf, the set VPi Vs is not empty.
So V' is irreducible and V is dense in V'. We have

V' X V' (V x V) U (V x Vs) U (V, xV)U (Vs x Vs).

For every point v G V, denote by vs the point v considered as a point in
Note that if (v,s) £ Z, then vs G V and vs G Vs are glued together in V'.
Define Rs : V —» Vs by v vs. Let

W{ {(a,b) G V x L I (a, b), (s,a) and (b. sa~l) are all in Z}

This is a non-empty open subset of Z. Take Z\ (id x /^XW) C V x W.
We define O, ¥, O-1 and W~l on Z\ by

0(a, bs) (a, (ab)s) G V x V,,
¥(<2, £>,) (bs, {ab)s) eVsxVS3

®~l(a,bs) (a, G V x h
^ y x y

for any (a, bs) G Zi. Let

W2 {(a, b) £ V x V

| (.y, 6), (a,sb), (s,a~lb) and (bs~\à) are all in Z}
This is a non-empty open subset of Z. Take Z2 (Rs x id)(W2) C Vs x V.
We define O, TX O-1, and T7"1 on Z2 by

Q>{as,b) 0aS)a{sb)) G h x y,
Tfiyu,/?) {b,a{sb)) G V x V,

fe^_1(a_1/7)) G Vy x y,
T/_1(ß,3i?) ((àw1)^-1,^) eyxy,

for any (as,b) G Z2.
Let Z' Z U Zj U Z2. It is an open subset of V' x Vf and O, SP,

T1"1 are defined on it. One can show that ®\z, and W\z> are open
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immersions. Given v G Vf we need to show there exists x G V' such that

(x, u) and (u,x) are in Z'. This is true if v G V by the property of Z. If
u G Vs, then v — as for some a e V. We leave it to the reader to show that

(x, a.v) G Zj and (as.x) G Z2 for generic x in V. This completes the proof of
the lemma.

The above lemma allows us to replace V by V', hence to expand V
whenever there exists a point s in V such that vs is not defined for all

v G V, and we can expand V' if there exists a point s' G V' such that v's! is

not defined for all v' G V'. Denote the result of finitely many such expansions
also by W, and let U C V x V x V7 be the closure of F. By Lemma 4.3

applied to V', the projection £>12: U ^ V x V is an open immersion. Its

image is the set of points (a,b) such that m: V x V —>• V' is defined at

(a,b). If V x s (jL p 12(F) for some point s in V, then replacing V' by
V' U V/ increases both V' and puiU). Using noetherian induction on open
subschemes of V x V, we may assume that after finitely many expansions,
F x s C pn(U) for all points s G F. Then we have pn(U) V x V.

PROPOSITION 4.5. Let V, V', and U be as above. If pn(U) V x V,

then the operation m: V' x V' —» V' is everywhere defined on V' and makes

V' an algebraic group.

Proof Take (a' ,b') in V' x V'. Choose a point x so that a'x and x~lb'
are both defined and lie in V. Then we can define m(a,1br) (a'x)(x~~xb').

Similarly one can define a'~lb' and b/a,~]. In this way we extend m, O,
T/, O-1 and T/_1 to V' x V'. The verification of the group axioms is routine
and is omitted.

5. Fundamental properties of generalized jacobians

Keep the notations in §3. We have proved that there is a birational group
structure on (X — S)(7r). The algebraic group associated to this birational group
is called the generalized jacobian of Xm and is denoted by Jm. It is a

commutative algebraic group.
Let Do be a divisor on X prime to S of degree 0. By Lemma 3.3, the

set

VDa — {D & {X —S)M I lm(D + D0)=l, l(D - m) 0}

is a non-empty open subset of (.X — S)(7r). We have the following
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