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3. THE 7;-SPHERICAL FUNCTIONS

Let £(g) be the universal enveloping algebra of the complexification gc of
g = sp(1,n). The elements of £(g) are considered as left-invariant differential
operators on G = Sp(1,n) acting on C* functions on the right:

@0 = Sfgepm| (e C¥G), Xew ge6).

We adopt Harish-Chandra’s notation f(g;D) for the image of f € C°°(G)
under the right action of D € {(g). The set of K-invariant elements of l(g)
is denoted by U(g)X.

3.1. THEOREM ([Go], Theorems 8, 10 and 14; [GaV], Theorems 1.3.14,
1.4.5 and Proposition 1.4.4). Let [ € N/2 be fixed. Let ( be a complex-
valued continuous function on G satisfying (2.9), (2.10) and ((e) =1 (e is
the unit element of G). The following statements are mutually equivalent.

1. The mapping [ fo(g)C(g)dg is an algebra homomorphism of
D(G; x;) into C.

2. ( satisfies the functional equation

(3.15) / Ckgik™ g2) dk = (g1)C(gn)
K
for all g1,9, € G.

3. ( is a common eigenfunction of the elements of U(g)X.

A function ( satisfying the equivalent conditions of Theorem 3.1 is called a
spherical function of type 7, (and height 1) or briefly a 7;-spherical function!).
Observe that Condition 3 implies in particular that every 7;-spherical

function is analytic on G because (g)X contains an elliptic differential
operator.

'Y Our definition of 7;-spherical function ¢ is formally less restrictive than Godement’s,
which also requires ¢ to be quasi-bounded with respect to some seminorm on G (cf. [Go],
p-519). It is possible to show (e.g. [GaV], Theorem 1.3.14) that each of the conditions for ¢
given by Theorem 3.1 is equivalent to the existence of an irreducible Fréchet representation
(T, H) — with a d;-dimensional K -isotypic subspace F((77) of type 7; — for which

1
() ¢ = - WE(TE()],
I

E(7;) being the projection of HH onto H(7y). (T, H) can be chosen to be a Banach representation
of G if and only if ¢ is quasi-bounded with respect to some seminorm on G. In Section 5 we
will determine, for each 7;-spherical function ¢, an irreducible Hilbert representation (7', H) for

which (*) holds. It follows, in particular, that the condition of quasi-boundedness is, in our case,
automatically satisfied.




228 G. VAN DIJK AND A. PASQUALE

For complex-valued functions f on G and F on R, we set

ff@=fgH (geb
F*(t) = F(—1) (teR).

The 1;-Abel transform of f € D(G; x,) is the function A;f on R defined
by

1
(3.16) Af@®) = — ep’/f(atn) dn .
d N
Its properties are summarized in the following proposition.

3.2. PROPOSITION. For all f € D(G;x)), Af is a C° function on R
with compact support. If f,f1,/» € D(G; x;) and ay,a, € C, then

(3.17) (A" = A,
(3.18) Al(aifi + arfs) = al Aifi + a Alf
(3.19) Aifi *f2) = Alfi * Aifa .

Formula (3.17) is equivalent to the fact that Af is an even function.

Proof. Formulas (3.17)—(3.19) are immediately proven by passing to
D(G; 7). For the last statement, recall that f(¢—!) = f(g) for f € D(G; x). [

The following lemma relates our definition of 4; to the definition often
found in the literature (cf. e.g. [W2], p.34).

3.3. LEMMA. For f € D(G;x;) one has

/ fkamn) dn = l><z(l<) / flam)dn.
N dl N

Proof. Let F € D(G;m). Then [, F(am)dn commutes with 7(m)
(m € M) so with 7(k;) (k; € K1), hence is a scalar multiple of the identity.
The lemma follows by taking traces.  []

We now use the 7;-Abel transform to construct 7;-spherical functions.
Because of Proposition 3.2, for any complex number s, the map

(3.20) As: f — / Af (e dt
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is an algebra homomorphism of D(G; x1) into C.
Set

1 —(s
(3.21) ays(kaim) = —xa(kpe™ "
[

Since f = f *dyx; and x(k=') = xu(k) for k € K, for every f € D(G;x1)

As(f) = —;—l ///f(ka,n)xl(k)e(_s+p)t dk dt dn
K —co N

= / flgaus(g) dg
G
- / £(9) / crs(kgk™") dk dg
G K
(3.22) = / £9)Cs(9) dg
G
with
(3.23) o= / 0 (kg™ dk
K

One easily checks that (;; satisfies ;5 = Q’SO, Crexdix; = (s and (5(e) = 1.
Thus (; is a 7;-spherical function. It will be shown in the next section that
any T7;-spherical function is of the form (3.24).

By Remark 2.3, we have

1
(3.24) Cs(g) = EXl(kl)gl,s(at) for g = kikoaiks

so (;, is uniquely determined by its restriction to A.

4. THE DIFFERENTIAL EQUATION FOR THE 7;-SPHERICAL FUNCTIONS

For a subalgebra u of g, let uc denote the complex subalgebra of gc
generated by u. The universal enveloping algebra (i) of uc is considered
as a subalgebra of (g).

The representation 7; of K; induces differentiated representations of the
Lie algebra £, of K; and of the universal enveloping algebra 1(t;) of ())c.
We indicate these representations with the same letter 7;. Let € be the
Lie algebra of K,. Every element Y € £c can be uniquely decomposed as
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