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HARMONIC ANALYSIS OVER Sp(1,n)/Sp(1) X Sp(n) 225

for f € C.(G). We adopt the usual notation C.(G) for the space of continuous
functions on G with compact support. In the above formulas, dn = dw dz
(n = n(w,z)) and dk is the normalized Haar measure on K.

Let

10
Klz{{g ﬂ:uespa)}, 1@:{{0 U}:UGSp(n)}.

Then every g € G can be written as g = kikya:k, for uniquely determird
ki € Ky, t >0 and for some ky,k} € K. Writing g = [g5] _,, we have

(1.5) ky = o and cosht = 1900 | -
oo
If g ¢ K, then > 0 and k, &, are uniquely determined modulo the subgroup
1 0 0
0V 0]: Vesp(n—l)}.
0 0 1

After dg is normalized according to (1.3), the corresponding integral formula
1s
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where

(1.7) A(f) := 2% (sinh /)" (cosh 1)’ .

2. THE CONVOLUTION ALGEBRA D(G;x;)

Let N/2 be the set of nonnegative half-integers {0,1/2,1,3/2,...}. Since
K; = Sp(1) is isomorphic to SU(2), N/2 parametrizes the set of equivalence
classes of unitary irreducible representations of K;. We denote with the same
symbol 7; either the equivalence class corresponding to the parameter [ or
a fixed representative for it. Thus 7; 1s a unitary irreducible representation
of K; in a Hilbert space V; of dimension d; = 2/ + 1. We extend 7; to
a representation of K by setting 7 = 1 on K,. Each 7; is self-dual, i.e.
unitarily equivalent to its contragredient representation. It follows in particular
that the character x; = trm; of 7; satisfies y;(k™!) = x;(k), k € K.

We denote by D(G; 7;) the convolution algebra of the compactly supported
C* maps F: G — End(V)) satisfying
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(2.8) F(kxk"y = my(k)F(x)T;(k") (k,k' € K,x € G).

Let D(G) be the convolution algebra of the C*° compactly supported complex
valued functions on G. Then D(G; ;) is isomorphic to the subalgebra D(G; x;)
of D(G) consisting of the functions f € D(G) satisfying

(2.9) f=f

and

(2.10) fdxi=f1,
where

(2.11) o) = /Kf(kxk—l)dk.

The isomorphism is given by F +—— d; tr F (see e.g. [Dij], Theorem 1.1).

The commutativity of the algebra D(G; x;) can be deduced from the fact
that the restriction 7y of 7; to M is multiplicity free (according to the general
criterion by Deitmar, cf. [Dei] Theorem 3, the commutativity of D(G; x;) and
the multiplicity freeness of 7|y are in fact equivalent). An elementary direct
argument by Takahashi proves the commutativity of a convolution algebra
which is slightly bigger than D(G; x;). Let D;(G) be the subalgebra of D(G)
consisting of the functions f € D(G) satisfying

(2.12) flakighky k) = £(g), g€ G,k €Ki,k €K5.
Clearly D(G; x;) C D1(G). Moreover D;(G) = @; D(G; x;). Showing that
(2.13) fig™H=f(g forall f€D(G) and g € G,

one proves the following lemma.
2.1. LEMMA ([T2], Proposition 1). The algebra D(G) is commutative.

2.2. LEMMA (cf. [T2], Lemma 2). For every function f € D(G;x)),
1
(2.14) flg9) =fkia) = Ele(kl)f(at)

ifg——-klkzatké (ki €K1;k2,k£€K2,' te R).

Proof. For F € D(G;1;), F(a,) is a scalar multiple of the identity, since
it commutes with 7;(k;) for all k; € K;. [

2.3. REMARK. Formula (2.13) and Lemma 2.2 remain true for all
continuous functions f such that f =f°, fxdpy=f.
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