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222 G. VAN DIUK AND A. PASQUALE

In Section 6 we prove that the 7-Abel transform is an isomorphism of
D(G; x~) onto the convolution algebra D, (R) of the even C°° compactly
supported functions on R. The inversion formula is explicitly written.
The Paley-Wiener Theorem for the 7-spherical transform is an immediate
consequence. The final Section 7 contains the inversion formula and the
Plancherel Theorem for the 7-spherical transform.

Similar results for SU(n, 1) have been obtained as a specialization of the
Hermitian symmetric case by Shimeno [Shi] and Heckman [HS, Part 1].
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1. THE FINE STRUCTURE OF Sp(l,n)

Let H be the skew-field of the quaternions. Consider on the right H-vector
space H"*! the Hermitian form

(11) [xa)’]:}_’OXO")_’lxl—"'—)_’nxna

the bar sign denoting quaternionic conjugation: if 1,i,j, k are the quaternionic
units and ¢ = a+ib+jc+ kd € H (with a,b,c,d € R), then g =
a—ib—jc—kd. Let G = Sp(l,n) be the group U(1,n;H) of (n+1)x(n+1)
matrices with coefficients in H which preserve this form. For n = 1, G
is called the De Sitter group. Let Sp(m) indicate the group U(m;H) of
m X m matrices with coefficients in H which preserve the inner product
(x,y) = y1ix1+- - -+Vmxn, of H”. In particular, Sp(1) consists of the quaternions
g=a+ib+jc+kd with norm |g| = va? + b? + ¢* + d?* equal to 1. Sp(1)
is canonically isomorphic to SU(2). The group G acts on the projective space
P,(H). Let Q denote the image of the open set {x € H**! : [x,x] > 0} under
the canonical map H"*!\ {0} — P,(H). Then G acts transitively on €, and
the stabilizer of the quaternionic line generated by the vector (1,0,...,0) is
the group

K = { [g (O/} cueSp(l),U e Sp(n)} = Sp(1) x Sp(n).

The homogeneous space G/K is called the hyperbolic quaternionic space.
K is a maximally compact subgroup of G. G is connected and simply
connected.
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To study the fine structure of G, we consider its Lie algebra g = sp(l, n).
Let J be the (n+ 1) x (n+ 1) matrix diag(—1,1,...,1). For any matrix X
of type (n+ 1,n+ 1) with coefficients in H we set X* = JX'J, the symbol
’ denoting transposition.

The Lie algebra g consists of the matrices X which verify the relation

X+X"=0.

These are the matrices of the form

Zy 72
Z, Zs

with Z; and Z; anti-Hermitian of type (1,1) and (n,n), respectively, and Z;
arbitrary. Let 6 be the anti-involutive automorphism of g defined by

0X =JXJ.

Then 6@ is a Cartan involution with the usual decomposition g = ¥+ p. Here
t is the Lie algebra of K. Let L be the following element of g:

0 0 1
L=1{0 0 O
1 00

Then L € p and a = RL is a maximal Abelian subspace of j. We are going
to diagonalize adL. The centralizer of L in ¥ is the subalgebra m of g of
the matrices

u 0 0

0O vV O

0 0 u
with u € H, u+ 4 =0 and V a matrix of type (n — 1,n — 1) satisfying

V+ V' = 0. The non-zero eigenvalues of adL are « = 1, —a, +2«. The
space g, consists of the matrices

0 z¥ 0
X=1z 0 —z
0 z* 0
where z is a matrix of type (n — 1,1) with coefficients in H, and z* := 3'.
The real dimension of g, is my = 4(n — 1). The space gz, consists of the
matrices of the form
w 0 —w
X=10 0 0
w 0 —w
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with w € H, w + w = 0. The dimension of g, is equal to my, = 3. We
have g =g_ o0 + 9o + M+ a+ go + 2o -
Let A be the subgroup expa. This is the subgroup of the matrices
cosht O sinht
a; = 0 I/ 0
sinht O cosht

where ¢ is a real number. The centralizer of A in K is the subgroup M of
the matrices

u 0 0
mu,V)y=10 V 0
0 0 u

with u € Sp(1) and V € Sp(n—1). The Lie algebra of M is m. The subspace
n = go + @20 1S a (real) nilpotent subalgebra. Set N = expn. This 1s the
subgroup of the matrices

*

l+w—3z2d 2 —w+ iz
n(w,z) = Z 1 —z

*

w—1z,7 2 1-w+ iz

where w € H satisfies w +w = 0 and z = [z1,...,2,—1]" 1S a matrix
of type (n — 1,1) with coefficients in H. We have set z* = Z' and
2,2l = —z121 — - = Za—1Zn—1-

The composition law in N is the following:

n(w,z) - n(w',7) = n(w +w + Sz,7'1, 2+ 7)),
where g = q—"z"—q for g € H. The subgroups A and M normalize N :
amn(w,2)a_,; = n(e*w, e'z7)
m(u, Vin(w, 2)m(u, V)~ = n(uwi, Vzi) .
Let 2p be the trace of the restriction of adL to n:
(1.2) p= —;—(ma + 2moy) =2n+ 1.

We have the Iwasawa decomposition G = KAN = KNA and the corre-
sponding integral formulas:

+oo
(1.3) / f(g)dg = / / / f(kan)e*?" dk dt dn
G K —ocoN

Fo0
(1.4) = / / / f(knay) dk dn di

K N —o0
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for f € C.(G). We adopt the usual notation C.(G) for the space of continuous
functions on G with compact support. In the above formulas, dn = dw dz
(n = n(w,z)) and dk is the normalized Haar measure on K.

Let

10
Klz{{g ﬂ:uespa)}, 1@:{{0 U}:UGSp(n)}.

Then every g € G can be written as g = kikya:k, for uniquely determird
ki € Ky, t >0 and for some ky,k} € K. Writing g = [g5] _,, we have

(1.5) ky = o and cosht = 1900 | -
oo
If g ¢ K, then > 0 and k, &, are uniquely determined modulo the subgroup
1 0 0
0V 0]: Vesp(n—l)}.
0 0 1

After dg is normalized according to (1.3), the corresponding integral formula
1s

1 T 2n 1 - , ,
a6 [rod=3(5) mom /] | [ faateaks)a di diade

G Ki K> 0 K>

where

(1.7) A(f) := 2% (sinh /)" (cosh 1)’ .

2. THE CONVOLUTION ALGEBRA D(G;x;)

Let N/2 be the set of nonnegative half-integers {0,1/2,1,3/2,...}. Since
K; = Sp(1) is isomorphic to SU(2), N/2 parametrizes the set of equivalence
classes of unitary irreducible representations of K;. We denote with the same
symbol 7; either the equivalence class corresponding to the parameter [ or
a fixed representative for it. Thus 7; 1s a unitary irreducible representation
of K; in a Hilbert space V; of dimension d; = 2/ + 1. We extend 7; to
a representation of K by setting 7 = 1 on K,. Each 7; is self-dual, i.e.
unitarily equivalent to its contragredient representation. It follows in particular
that the character x; = trm; of 7; satisfies y;(k™!) = x;(k), k € K.

We denote by D(G; 7;) the convolution algebra of the compactly supported
C* maps F: G — End(V)) satisfying
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