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HARMONIC ANALYSIS ON VECTOR BUNDLES
OVER Sp(1,7)/Sp(1) x Sp(n)

by G. VAN DUK and A. PASQUALE

ABSTRACT. Harmonic analysis on vector bundles over Sp(l,n)/Sp(1) x Sp(n)
associated with a finite dimensional representation 7 of Sp(l) is developed using
Godement’s approach of trace spherical functions. The trace spherical trace functions
are written in terms of Jacobi functions, and among them the positive definite ones are
singled out. An inversion formula for the generalized Abel transform is given explicitly.
The Paley-Wiener theorem, the inversion formula and the Plancherel theorem for the
T -spherical transform are determined.

INTRODUCTION

Harmonic analysis over Riemannian symmetric spaces of noncompact type
is a fundamental and powerful area of mathematics that exhibits a beautiful
interplay between the theory of special functions and the representation theory
of semisimple Lie groups. Grown around the monumental work of Harish-
Chandra, it has nowadays reached a nearly complete formulation, but, in
its development, it has also laid the foundations of its natural extension:
harmonic analysis on vector bundles over Riemannian symmetric spaces of
noncompact type. Motivated also by many physical applications, this new
subject 1s currently studied very intensively (cf. for instance [BR], [O], [Shi],
[Cam], [P], [vdV], [M], [Dei], [BOS]), but a general theory has not yet been
formulated.

In this paper we present a complete treatment of harmonic analysis for the
spherical transform on a certain class of vector bundles over the hyperbolic
space Sp(1,n)/Sp(1) x Sp(n). Set G = Sp(1,n) and K = Sp(1) x Sp(n). The
class of vector bundles we consider are those associated with finite-dimensional
irreducible representations 7 of K which are trivial on Sp(n), so actually finite
dimensional representations of Sp(1) = SU(2). This setting is sufficiently
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general to exhibit the new features of the theory, namely representations 7
of arbitrary dimensions and the possible occurrence of the discrete series in
the Plancherel formula. But, at the same time, it is also very concrete and
therefore allows us to determine very explicit formulas, which make this paper
also a ready-to-use reference for applications of harmonic analysis. In fact, this
work 1s a prelude to the canonical representations of Sp(1,n) associated with
representations of Sp(1) (cf. [DP]). In a special case, these representations have
been studied by van Dijk and Hille [DH], but the introduction of canonical
representations goes back to Berezin and to Gel’fand, Graev and Vershik. The
main task is their decomposition into irreducible components, and, for this
purpose, one needs the harmonic analysis we have developed in this paper.

The methods we employ take their roots in the work of Harish-Chandra
and Godement, but their particular application we consider appears to be new.
We have tried to keep a down-to-earth exposition in order to make the deep
work of these authors accessible to a large mathematical audience. We have
adopted Godement’s prospective of trace spherical functions, but other points
of view are possible (see [Dij]). Partial results have been previously obtained
by Takahashi (but neither the Plancherel formula, nor the list of the positive
definite spherical functions) and by @rsted and Zhang (only — incomplete —
results on the Plancherel formula). The Plancherel formula has been recently
determined by Camporesi [Cam] in a much wider context than ours. His
formula is however of very little use for practical purposes, and it does not
even transparently show the possible splitting of the spectrum into continuous
and discrete parts. Moreover, it has required the full Plancherel theorem on G,
a tool by far more complicated than those employed for the known Plancherel
theorem for the K -bi-invariant functions.

Let us now describe in more detail the background of the paper.

In [Go], Godement developed a general theory for the functions on a locally
compact group G which are spherical with respect to a compact subgroup K.
In his definition, the spherical functions on G arise from K -finite irreducible
Banach representations of G. Let g — T(g) be such a representation of G on
H. Suppose 7 is an equivalence class of irreducible unitary representations of
K that occurs in the restriction T|g of T to K. Let d, and Y, respectively
denote the dimension and the character of 7. Set &,(k) = d.x-(k~!) for
k € K, and form the projection E(7) = T|x(&,;) of H onto the K-isotypic
subspace of H of type 7. Then the spherical trace function (7 of type T
(shortly, 7-spherical function) on G associated with 7 is defined as the trace

1
Crr(9) = = ulE(MT(GE)].
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Crr 1is said to be of height p when 7 occurs p times (p>1)in Tlk.

Suppose, as in our situation, that G 1s a semisimple Lie group. Then the
-spherical functions of height 1 have much more manageable descriptions,
either as common eigenfunctions of the left-invariant differential operators on
G which are Ad(K)-invariant, or as characters of the convolution algebra
D(G; x-) of all C® compactly supported K-central functions on G with
fixed K-type 7. Moreover, as proved by Godement, all T -spherical functions
are of height 1 when D(G;x,) is commutative. In this case, the -
spherical functions are the building blocks for the harmonic analysis on L?-
sections of the homogeneous vector bundle on G/K associated with 7. For
example, the algebra D(G;Y,) is always commutative when G has finite
center, K is maximally compact in G and 7 is the trivial representation 1.
Then the spherical functions of type 1 agree with the usual K-bi-invariant
spherical functions on G. A less classical example of commutativity of
D(G; x-) is provided by Hermitian symmetric pairs (G, K) and 1 -dimensional
representations of K (cf. [Shi]).

Takahashi recognized in [T2] that if G = Sp(1,n) and K = Sp(1) x Sp(n),
then the algebra D(G; x,) is commutative for every irreducible representation
7 of K which is trivial on Sp(n). He also explicitly computed some characters
of D(G; x,) (and it turns out that they are all!) in terms of Jacobi functions.
The case n = 1 has been previously studied by the same author in [T1].

Our paper is organized as follows. In Section 1 we recall some structural
properties of Sp(1,n). Section 2 describes the commutativity of the algebra
D(G; x,) associated with a representation 7 of K which is trivial on Sp(n).
Section 3 introduces the 7-spherical functions as characters of D(G; x,) and
gives their first properties. In Section 4 we find the differential equations
satisfied by the spherical functions. This either provides us with their explicit
expression in terms of Jacobi functions, or allows us to conclude that they
are indeed all the spherical functions for Sp(l,n) associated with the given
representation of Sp(l) C K. |

In Section 5 we write the spherical functions of type 7 as the trace
of the projection on the K-type 7 of certain degenerate principal series
representations of Sp(1,n) which have been studied by Howe and Tan [HT].
From this we can establish which among our spherical functions are positive
definite. We underline the occurrence of a rather peculiar phenomenon : for a
fixed representation 7, there are positive definite spherical functions arising
from the complementary series of Sp(1,#n) if and only if there are no positive
definite spherical functions arising from the discrete series.
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In Section 6 we prove that the 7-Abel transform is an isomorphism of
D(G; x~) onto the convolution algebra D, (R) of the even C°° compactly
supported functions on R. The inversion formula is explicitly written.
The Paley-Wiener Theorem for the 7-spherical transform is an immediate
consequence. The final Section 7 contains the inversion formula and the
Plancherel Theorem for the 7-spherical transform.

Similar results for SU(n, 1) have been obtained as a specialization of the
Hermitian symmetric case by Shimeno [Shi] and Heckman [HS, Part 1].

ACKNOWLEDGMENT. During the preparation of this paper, the second
author has been financially supported by the Dutch Organization for Scientific
Research (N.W.O.).

1. THE FINE STRUCTURE OF Sp(l,n)

Let H be the skew-field of the quaternions. Consider on the right H-vector
space H"*! the Hermitian form

(11) [xa)’]:}_’OXO")_’lxl—"'—)_’nxna

the bar sign denoting quaternionic conjugation: if 1,i,j, k are the quaternionic
units and ¢ = a+ib+jc+ kd € H (with a,b,c,d € R), then g =
a—ib—jc—kd. Let G = Sp(l,n) be the group U(1,n;H) of (n+1)x(n+1)
matrices with coefficients in H which preserve this form. For n = 1, G
is called the De Sitter group. Let Sp(m) indicate the group U(m;H) of
m X m matrices with coefficients in H which preserve the inner product
(x,y) = y1ix1+- - -+Vmxn, of H”. In particular, Sp(1) consists of the quaternions
g=a+ib+jc+kd with norm |g| = va? + b? + ¢* + d?* equal to 1. Sp(1)
is canonically isomorphic to SU(2). The group G acts on the projective space
P,(H). Let Q denote the image of the open set {x € H**! : [x,x] > 0} under
the canonical map H"*!\ {0} — P,(H). Then G acts transitively on €, and
the stabilizer of the quaternionic line generated by the vector (1,0,...,0) is
the group

K = { [g (O/} cueSp(l),U e Sp(n)} = Sp(1) x Sp(n).

The homogeneous space G/K is called the hyperbolic quaternionic space.
K is a maximally compact subgroup of G. G is connected and simply
connected.
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To study the fine structure of G, we consider its Lie algebra g = sp(l, n).
Let J be the (n+ 1) x (n+ 1) matrix diag(—1,1,...,1). For any matrix X
of type (n+ 1,n+ 1) with coefficients in H we set X* = JX'J, the symbol
’ denoting transposition.

The Lie algebra g consists of the matrices X which verify the relation

X+X"=0.

These are the matrices of the form

Zy 72
Z, Zs

with Z; and Z; anti-Hermitian of type (1,1) and (n,n), respectively, and Z;
arbitrary. Let 6 be the anti-involutive automorphism of g defined by

0X =JXJ.

Then 6@ is a Cartan involution with the usual decomposition g = ¥+ p. Here
t is the Lie algebra of K. Let L be the following element of g:

0 0 1
L=1{0 0 O
1 00

Then L € p and a = RL is a maximal Abelian subspace of j. We are going
to diagonalize adL. The centralizer of L in ¥ is the subalgebra m of g of
the matrices

u 0 0

0O vV O

0 0 u
with u € H, u+ 4 =0 and V a matrix of type (n — 1,n — 1) satisfying

V+ V' = 0. The non-zero eigenvalues of adL are « = 1, —a, +2«. The
space g, consists of the matrices

0 z¥ 0
X=1z 0 —z
0 z* 0
where z is a matrix of type (n — 1,1) with coefficients in H, and z* := 3'.
The real dimension of g, is my = 4(n — 1). The space gz, consists of the
matrices of the form
w 0 —w
X=10 0 0
w 0 —w
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with w € H, w + w = 0. The dimension of g, is equal to my, = 3. We
have g =g_ o0 + 9o + M+ a+ go + 2o -
Let A be the subgroup expa. This is the subgroup of the matrices
cosht O sinht
a; = 0 I/ 0
sinht O cosht

where ¢ is a real number. The centralizer of A in K is the subgroup M of
the matrices

u 0 0
mu,V)y=10 V 0
0 0 u

with u € Sp(1) and V € Sp(n—1). The Lie algebra of M is m. The subspace
n = go + @20 1S a (real) nilpotent subalgebra. Set N = expn. This 1s the
subgroup of the matrices

*

l+w—3z2d 2 —w+ iz
n(w,z) = Z 1 —z

*

w—1z,7 2 1-w+ iz

where w € H satisfies w +w = 0 and z = [z1,...,2,—1]" 1S a matrix
of type (n — 1,1) with coefficients in H. We have set z* = Z' and
2,2l = —z121 — - = Za—1Zn—1-

The composition law in N is the following:

n(w,z) - n(w',7) = n(w +w + Sz,7'1, 2+ 7)),
where g = q—"z"—q for g € H. The subgroups A and M normalize N :
amn(w,2)a_,; = n(e*w, e'z7)
m(u, Vin(w, 2)m(u, V)~ = n(uwi, Vzi) .
Let 2p be the trace of the restriction of adL to n:
(1.2) p= —;—(ma + 2moy) =2n+ 1.

We have the Iwasawa decomposition G = KAN = KNA and the corre-
sponding integral formulas:

+oo
(1.3) / f(g)dg = / / / f(kan)e*?" dk dt dn
G K —ocoN

Fo0
(1.4) = / / / f(knay) dk dn di

K N —o0
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for f € C.(G). We adopt the usual notation C.(G) for the space of continuous
functions on G with compact support. In the above formulas, dn = dw dz
(n = n(w,z)) and dk is the normalized Haar measure on K.

Let

10
Klz{{g ﬂ:uespa)}, 1@:{{0 U}:UGSp(n)}.

Then every g € G can be written as g = kikya:k, for uniquely determird
ki € Ky, t >0 and for some ky,k} € K. Writing g = [g5] _,, we have

(1.5) ky = o and cosht = 1900 | -
oo
If g ¢ K, then > 0 and k, &, are uniquely determined modulo the subgroup
1 0 0
0V 0]: Vesp(n—l)}.
0 0 1

After dg is normalized according to (1.3), the corresponding integral formula
1s

1 T 2n 1 - , ,
a6 [rod=3(5) mom /] | [ faateaks)a di diade

G Ki K> 0 K>

where

(1.7) A(f) := 2% (sinh /)" (cosh 1)’ .

2. THE CONVOLUTION ALGEBRA D(G;x;)

Let N/2 be the set of nonnegative half-integers {0,1/2,1,3/2,...}. Since
K; = Sp(1) is isomorphic to SU(2), N/2 parametrizes the set of equivalence
classes of unitary irreducible representations of K;. We denote with the same
symbol 7; either the equivalence class corresponding to the parameter [ or
a fixed representative for it. Thus 7; 1s a unitary irreducible representation
of K; in a Hilbert space V; of dimension d; = 2/ + 1. We extend 7; to
a representation of K by setting 7 = 1 on K,. Each 7; is self-dual, i.e.
unitarily equivalent to its contragredient representation. It follows in particular
that the character x; = trm; of 7; satisfies y;(k™!) = x;(k), k € K.

We denote by D(G; 7;) the convolution algebra of the compactly supported
C* maps F: G — End(V)) satisfying
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(2.8) F(kxk"y = my(k)F(x)T;(k") (k,k' € K,x € G).

Let D(G) be the convolution algebra of the C*° compactly supported complex
valued functions on G. Then D(G; ;) is isomorphic to the subalgebra D(G; x;)
of D(G) consisting of the functions f € D(G) satisfying

(2.9) f=f

and

(2.10) fdxi=f1,
where

(2.11) o) = /Kf(kxk—l)dk.

The isomorphism is given by F +—— d; tr F (see e.g. [Dij], Theorem 1.1).

The commutativity of the algebra D(G; x;) can be deduced from the fact
that the restriction 7y of 7; to M is multiplicity free (according to the general
criterion by Deitmar, cf. [Dei] Theorem 3, the commutativity of D(G; x;) and
the multiplicity freeness of 7|y are in fact equivalent). An elementary direct
argument by Takahashi proves the commutativity of a convolution algebra
which is slightly bigger than D(G; x;). Let D;(G) be the subalgebra of D(G)
consisting of the functions f € D(G) satisfying

(2.12) flakighky k) = £(g), g€ G,k €Ki,k €K5.
Clearly D(G; x;) C D1(G). Moreover D;(G) = @; D(G; x;). Showing that
(2.13) fig™H=f(g forall f€D(G) and g € G,

one proves the following lemma.
2.1. LEMMA ([T2], Proposition 1). The algebra D(G) is commutative.

2.2. LEMMA (cf. [T2], Lemma 2). For every function f € D(G;x)),
1
(2.14) flg9) =fkia) = Ele(kl)f(at)

ifg——-klkzatké (ki €K1;k2,k£€K2,' te R).

Proof. For F € D(G;1;), F(a,) is a scalar multiple of the identity, since
it commutes with 7;(k;) for all k; € K;. [

2.3. REMARK. Formula (2.13) and Lemma 2.2 remain true for all
continuous functions f such that f =f°, fxdpy=f.
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3. THE 7;-SPHERICAL FUNCTIONS

Let £(g) be the universal enveloping algebra of the complexification gc of
g = sp(1,n). The elements of £(g) are considered as left-invariant differential
operators on G = Sp(1,n) acting on C* functions on the right:

@0 = Sfgepm| (e C¥G), Xew ge6).

We adopt Harish-Chandra’s notation f(g;D) for the image of f € C°°(G)
under the right action of D € {(g). The set of K-invariant elements of l(g)
is denoted by U(g)X.

3.1. THEOREM ([Go], Theorems 8, 10 and 14; [GaV], Theorems 1.3.14,
1.4.5 and Proposition 1.4.4). Let [ € N/2 be fixed. Let ( be a complex-
valued continuous function on G satisfying (2.9), (2.10) and ((e) =1 (e is
the unit element of G). The following statements are mutually equivalent.

1. The mapping [ fo(g)C(g)dg is an algebra homomorphism of
D(G; x;) into C.

2. ( satisfies the functional equation

(3.15) / Ckgik™ g2) dk = (g1)C(gn)
K
for all g1,9, € G.

3. ( is a common eigenfunction of the elements of U(g)X.

A function ( satisfying the equivalent conditions of Theorem 3.1 is called a
spherical function of type 7, (and height 1) or briefly a 7;-spherical function!).
Observe that Condition 3 implies in particular that every 7;-spherical

function is analytic on G because (g)X contains an elliptic differential
operator.

'Y Our definition of 7;-spherical function ¢ is formally less restrictive than Godement’s,
which also requires ¢ to be quasi-bounded with respect to some seminorm on G (cf. [Go],
p-519). It is possible to show (e.g. [GaV], Theorem 1.3.14) that each of the conditions for ¢
given by Theorem 3.1 is equivalent to the existence of an irreducible Fréchet representation
(T, H) — with a d;-dimensional K -isotypic subspace F((77) of type 7; — for which

1
() ¢ = - WE(TE()],
I

E(7;) being the projection of HH onto H(7y). (T, H) can be chosen to be a Banach representation
of G if and only if ¢ is quasi-bounded with respect to some seminorm on G. In Section 5 we
will determine, for each 7;-spherical function ¢, an irreducible Hilbert representation (7', H) for

which (*) holds. It follows, in particular, that the condition of quasi-boundedness is, in our case,
automatically satisfied.
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For complex-valued functions f on G and F on R, we set

ff@=fgH (geb
F*(t) = F(—1) (teR).

The 1;-Abel transform of f € D(G; x,) is the function A;f on R defined
by

1
(3.16) Af@®) = — ep’/f(atn) dn .
d N
Its properties are summarized in the following proposition.

3.2. PROPOSITION. For all f € D(G;x)), Af is a C° function on R
with compact support. If f,f1,/» € D(G; x;) and ay,a, € C, then

(3.17) (A" = A,
(3.18) Al(aifi + arfs) = al Aifi + a Alf
(3.19) Aifi *f2) = Alfi * Aifa .

Formula (3.17) is equivalent to the fact that Af is an even function.

Proof. Formulas (3.17)—(3.19) are immediately proven by passing to
D(G; 7). For the last statement, recall that f(¢—!) = f(g) for f € D(G; x). [

The following lemma relates our definition of 4; to the definition often
found in the literature (cf. e.g. [W2], p.34).

3.3. LEMMA. For f € D(G;x;) one has

/ fkamn) dn = l><z(l<) / flam)dn.
N dl N

Proof. Let F € D(G;m). Then [, F(am)dn commutes with 7(m)
(m € M) so with 7(k;) (k; € K1), hence is a scalar multiple of the identity.
The lemma follows by taking traces.  []

We now use the 7;-Abel transform to construct 7;-spherical functions.
Because of Proposition 3.2, for any complex number s, the map

(3.20) As: f — / Af (e dt
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is an algebra homomorphism of D(G; x1) into C.
Set

1 —(s
(3.21) ays(kaim) = —xa(kpe™ "
[

Since f = f *dyx; and x(k=') = xu(k) for k € K, for every f € D(G;x1)

As(f) = —;—l ///f(ka,n)xl(k)e(_s+p)t dk dt dn
K —co N

= / flgaus(g) dg
G
- / £(9) / crs(kgk™") dk dg
G K
(3.22) = / £9)Cs(9) dg
G
with
(3.23) o= / 0 (kg™ dk
K

One easily checks that (;; satisfies ;5 = Q’SO, Crexdix; = (s and (5(e) = 1.
Thus (; is a 7;-spherical function. It will be shown in the next section that
any T7;-spherical function is of the form (3.24).

By Remark 2.3, we have

1
(3.24) Cs(g) = EXl(kl)gl,s(at) for g = kikoaiks

so (;, is uniquely determined by its restriction to A.

4. THE DIFFERENTIAL EQUATION FOR THE 7;-SPHERICAL FUNCTIONS

For a subalgebra u of g, let uc denote the complex subalgebra of gc
generated by u. The universal enveloping algebra (i) of uc is considered
as a subalgebra of (g).

The representation 7; of K; induces differentiated representations of the
Lie algebra £, of K; and of the universal enveloping algebra 1(t;) of ())c.
We indicate these representations with the same letter 7;. Let € be the
Lie algebra of K,. Every element Y € £c can be uniquely decomposed as
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Y =YD +Y® with Y¥ € (8)c, j = 1,2. The symbol x; will also be used
for the C-linear map on () defined by

Xi(H - Y) =t [ (D) - (X))

for Yi,...,Y, € tc.

The Iwasawa decomposition g = ¥+ a + n gives U(g) = UE)U(a)(n) =
HE) @ U(a) & Ugne. Let P: U(g) — UE) ® U(a) be the corresponding
projection. For s € C, let e; be the C-linear map on i(a) defined by

es(L™) .= (—1)"(s + p)" for every integer m > 0 .

Define p;s: U(g) — C to be the composition p;; := (Zzl',Xl & es> o P, where
as before d; = dim ;.

4.1. PROPOSITION. Let (s be the function defined by Formula (3.23).
For every D € (g)X and g€ G

(4.25) C,s(g; D) = p1s(D).5(g) -

Proof. Because of Theorem 3.1, (;; 1s an eigenfunction of every
D € $(g)X. The eigenvalue corresponding to D € U(g)X is C1.s(e; D)
because (;s(¢) = 1. Since D is K-invariant, (;s(e;D) = oy4(e; D). Write
D =) yixi+ Zjnj with y; € U(¥), x; € U(a) and n; € Wg)nc. Then
ap(e; D) = ) . oy s(e; yix;) because agg(gn) = oys(g) for g € G and n € N.
To compute oy s(e;y;x;), assume without loss of generality that x; = L™ and
that y; = Y;---Y, with ¥; € £. The definition of oy, gives

1
oy s(e; yixi) = ZZ;XI()’i)(_l)m(S +p)" = prsixi) -

Thus Cl,s(e;D) - pl,s(D)- L]

Let §(D) denote the 7;-radial component on A" := {a, : t > 0} of the
differential operator D € $i(g) ; that is, the unique differential operator on A
satisfying

flas; (D)) = f(ar; D)

for all f € D(G;x;) and t > 0. Proposition 4.1 immediately implies

4.2. COROLLARY. (g is an eigenfunction of the 1;-radial component on
AT of every K -invariant differential operator on G : :

(4.26) Grs(ar 61(D)) = pui,s(D)G1,s(ay) (D € W), 1>0).
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We now write (4.26) explicitly in the case D is the Casimir operator
w of g. Let B denote the Cartan-Killing form of g¢ (= sp(1 +n,C)). If
X,Y € sp(1,n), then

B(X,Y) =4(n+2) N tr(XY)

where R denotes the quaternionic real part: Fqg = qzﬂ for g € H. The bilinear
form By(X,Y) := —B(X,0Y) is an inner product on g. Orthonormality will
be considered with respect to Byg.

Let {Z}L, (m:=2n"+n) and {Xg;}/2, (6 € {e,2a}) be orthonormal
bases in m and in gg respectively. Define X_g; = —0(Xg;) for § € {o,2a}
and j = 1,...,mg. Then {X_m}]'.fl is an orthonormal basis for g_g, and
B(Xg,i,X_p,) = 0;. Moreover, for all j =1,...,mg, Hg := [Xg;,X_p,] is
the unique element of a satisfying B(Hg,L) = 6(L) ie.

1 if =«
2 if f=2a.

o hg
P 8 +2)

L with h@ = {

Set Hy := ﬁ, a unit vector in a. Then, if Dg; := XpiX-pj+X_p;iXp;,
we have (cf. [GaV], p.132)

mg
(4.27) w=wn+H+ > Y Dp;
Be{a,2a} j=1
fnﬁ
=wn TH A+ ) omgHg+2 Y Y XX g,
Be{a,2a} pe{a,2a} j=1
where
(4.28) Wy = — ZZJ2 .
Hence v
2
B(L,L)
Be{a,2a}
from which we conclude
+p)* =2 2_ 2
(429)  prsw) = prs(wm) + (s+p?—20(6+p) 1 s2—p

B(L,L) = EXI(Wm) “+ 8(n 1 2 .
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To compute §;(w) we use Formula (4.27). Observe first that if f € D(G; x;)
and Y € U(¥), then f(a,;Y) = dilXZ(Y). Hence 6,(Y) = dilxl(Y). In particular,

1
(4.30) b(wm) = EXz(wm)-
l
Write
(4.31) XBJZYQJ—JFPIBJ with YﬂJGE,PﬁJGD.

A standard computation (cf. e.g. [W2], p.278) then gives for f € D(G; x))
and > 0

P % . 4 1 —cosh(z5(L)) 2
flai; Dg ;) = coth(tG(L))f (ar; Hp) + 4 s xi(Yp,; ) (a)

1.e.

N i 1 — cosh(zG(L)) 2
(4.32) 61(Dg,j) = coth(tB(L))Hpg + 4 Smb2BD) x1(Yg;7).

Notice that x;(Y3 ) =0 forall j=1,...,mq.

For h =i,j,k, let Y, denote the tangent vector at e to the 1-parameter
subgroup ¢ +— cost + hsint in Sp(l). Explicit choices of the orthonormal
bases in m and g, prove that

3
1
433) ) =-2) xi¥3,) = 3D > i (v’
h

€{ij,k}

J=1

As shown in [T1], p.381, there exists an orthonormal basis {v,},__, in
V; such that

T1(Y)v, = —2ipv,

W
Ti(Yj)vp = =10, 1 Vpt

l [
TI(Yi)Up = =01 Upt1 + QpUp—1

where
ol = [(I+p)I —p + DIV

It follows that for h =1i,j,k
) 4
(4.34) tr [(Ys)’] = —§1(1+ DRI+ 1).

Identify A with R and L with % under the isomorphism ¢ — exp(tL) = a;.
Formulas (4.27), (4.30) and (4.32)—(4.34) then prove the following proposition.
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4.3. PROPOSITION. Let 7; be an irreducible unitary representation of Ki
of dimension 21+ 1. Then

|. The 7-radial component of the Casimir operator w is

d? d 4l(l+ 1)
- - thz+3 tanht]— +————+4l(I+1) ¢ .
o) 8(n+2) { dt? +(@n—1)coth i+t ]dt cosh? ¢ }
2. For every s € C
(4.35) pis(w) = [41( + 1) + s* — p*].

8(n + 2)
3. For every s € C, the function (4(t) := (s5(ar) satisfies the differential

equation on (0, +00)

411+ 1
@436) '+ [(4n—)cotht+3tanh iyl + Lt D

2 )
u=(s"—pHu.
cosh” ¢

The substitution v(r) = (cosh?)~?u(¢) transforms the differential equation
(4.36) into the Jacobi differential equation (cf. [K2], p.6)

(4.37) v + [(4n — 1) cotht + (4] + 3) tanh 1" = (s* — p v

with parameters « =2n—1 and §=2[+1. Here p:=a+ 3+ 1=p+2L
The Jacobi function

(4.38) Gn=12AED(p) = F (p ;L o 4 > > 2n; — sinh? z)
=F (p;—s + 1, f)—%—{ +l;2n;—sinh2t>

is the unique solution v to (4.37) satisfying v(0) =1, v'(0) = 0. (In (4.38),
F(a,b;c;z) denotes the analytic branch on C\ [1,00) of the hypergeometric
function.)

The 7;-spherical function (; is therefore explicitly given by

(4.39) Gs(0) = Gsla) = (cosh ) ¢ M0 ()
= (cosh ) F (,0 ;_ ° + 1, & ; > + I; 2n; — sinh? t) :
Formula (4.39) has been previously determined by Takahaski ([T2], Formula
(7), p.225) by direct integration of (3.23), using the following expression of
x; in terms of Gegenbauer polynomials:
sin ((21 + 1Y)
sin ¢
Formula (4.35) shows that p; ;(w) 1s an even function of s which assumes

arbitrary complex values as s varies in C. The following corollary can
therefore be deduced from Theorem 3.1 and Proposition 4.3.

(4.40) xi(ki) = Cy; (Rky) =

if Rk = cosy.
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4.4. COROLLARY. The Tj-spherical functions are exactly the functions
{¢s : s € C} given by Formulas (3.24) and (4.39). Further, (., satisfies
Cs(g) = Q,S(g“l) for all g € G. Moreover, ;s = (¢ if and only if s = +s'.

The functional equation (3.15) with ¢g; = a; and g, = a, becomes (cf.
[T2], Théoreme 1, p.227)

(4.41) Cr,s(DC,s(T) = / Ki(t, 7, u)Gr,s(W)Au) du
0

where A is as in (1.7) and the kernel K(z,7,u) is defined as follows. Set

cosh? ¢ + cosh? 7 +cosh?u — 1

2 coshzcosh 7 cosh u
Then

272PT'(2n) (coshtcosh T cosh u)?" 3

3
. . . (1-B*"~2
1 n—
v/7I'(2n — 3) (sinhtsinh 7 sinh u)*~2

4.42) Kit,7,u) =

11
« F(2n+21,2n~21—2;2n— 5150 —B))

if B <1, and Ki(t,7,u) := 0 if B > 1. Using (4.39) and Formula (7.11)
in [K2], one can prove that (4.41) holds also outside our group-theoretical
setting for all / € R satisfying 2n—1 > 21 > 0.

5. 'THE POSITIVE DEFINITE 7;-SPHERICAL FUNCTIONS

A continuous function ¢ on a locally compact group G is said to be
positive definite if for every f € C.(G)

/ / YT dedy > 0.
G G

In this section we establish which among the (;; are positive definite.

Let us first introduce some notation and recall some definitions. Let G be
a semisimple Lie group with finite center, and let K be a maximal compact
subgroup of G. g and £ (C g) are the Lie algebras of G and K, respectively.
A (strongly continuous) representation 7 of G on a Banach space H is
denoted by (7T,H). We may simply speak of the representation 7T if H is
understood. Irreducibility for 7 always means topological irreducibility (= no
closed proper invariant subspaces). Let K denote the set of equivalence classes
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of finite dimensional irreducible representations of K. We say that 7 € K
occurs in Tl if there exists a finite dimensional T'|k-invariant subspace V
of H so that (T|x,V) € 7. The linear span of all these subspaces V 1s the
K -isotypic subspace of H of type 7, denoted H(r). If d, is the dimension
of 7 and x. is its character, then

Er(m) = d, / TGk xr () dk

K

is a continuous projection of H onto H(7). We set Hgx = > . H(7). T is
said to be K -finite if dimH(r) < oo for all 7 € K. A Hilbert representation
(T,H) is said to be admissible if it is K-finite and if T|x acts on JH by
unitary operators.

A representation U of an (associative or Lie) algebra A on a C-vector
space E is denoted (U,E). The term A-module is also used. Irreducibility
for U always means algebraic irreducibility (= no proper invariant subspaces).
Let EC denote the set of equivalence classes of finite dimensional simple f¢c-
modules. The sum of all simple ¥c-submodules of E which are in the class
6 € tc is denoted by E(§). (U,E) is said t-finite if dimE(8) < co for all
§ ctc and if E = Z E(6)

Every K-finite 1rreduc1ble representation (7', H) of G induces a E-finite
irreducible representation (Tx,Hg) of L(g) by differentiation. If, moreover,
H 1s Hilbert and T is unitary, then g acts on Hg by skew-adjoint operators :
(Tx(X)p, ) = — (@, Txk(X)p) for all X € g and all ¢, € Hg. Two K -finite
representations (T, H), (T',H’) of G are said to be infinitesimally equivalent
if the representations (Tx,Hg), (Tx, Hy) of U(g) are equivalent.

Assume G is simply connected (which is the case for G = Sp(1,n)). It is
a result of Harish-Chandra ([HC1], Theorem 9; see also [W1], pp.330-331)
that if (U,S) is an algebraically irreducible ¢-finite representation of £i(g)
and if S can be endowed with a positive definite Hermitian form (.,-) for
which g acts on (S, (-,-)) via skew-adjoint operators, then there is a unique
unitary irreducible representation 7 of G on the Hilbert completion H of
S with respect to (-,-) so that fHK S and Tx = U. We say 1in this
case that (U,S) — or simply S if U is understood — is wunitarizable. If, in
particular, (U, S) = (TK,J{K) for a K-finite irreducible representation (7, H)
of G, then (7,H) and (T J-C) are infinitesimally equivalent. The converse is
also obvious: if (7, H) is an irreducible K -finite representation of G which

is infinitesimally equivalent to a unitary Hilbert representation (T, 3{) of G,
then (Tx,Hg) is unitarizable.
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As we are going to show, the 7;-spherical functions can be written as

1 1
G,s(9) = 4 tr[E(T)T1,s(9)E(T)] = 2 tr[E(T)T1,5(9)]

for certain admissible irreducible Hilbert representations (775, H;;) of G =
Sp(1,n) satisfying dim H, ;(1;) = d; (for the second equality see e.g. [HC2],
Lemma 1). The positive definite (;; can then be selected by applying the
following theorem.

5.1. THEOREM ([Sak], Theorem 3; [B], 14.8, p.44). (s is positive
definite if and only if (T)s,H;s) is infinitesimally equivalent to a unitary
representation.

Realize 7; as a unitary representation on a (2/ + 1)-dimensional Hilbert
space V; with inner product (-,-),. For all s € C, define a representation 6, ,
of P =MAN on V; by

0) s(man) = e TP (m)

Consider the representation Tl/,s = Indﬁ(@,)s) of G = Sp(1,n): the represen-
tation space is the Hilbert completion J}; of the set of the C*° functions
F: G — V,; satistying

F(gp) = 0,s(p"HF(g) = * P'r(m~HF(g9), g€ G, p=mancP,

with respect to the inner product

(Fy, F)i = / (F\(0), Fa()), dk.
K
G acts according to

(T (DF)g)=Fg'g), 9,9 €G.

T], is admissible, but need not be irreducible.
The following lemma is a straightforward generalization of the result in
Section 16, pp.526-528, of [Go]. We therefore omit its proof.

52. LEMMA. Forall 1€ N/2 and s € C, let E'(1]) denote the projection
of H,s onto its K-isotypic subspace of type 1;. Then

1
Gs9) = 5 UTE' T/ (9).
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The composition series structure and unitarity for the T, have been
determined by Howe and Tan with infinitesimal methods. In [HT], the results
about the 7, are deduced from those obtained for a certain family of
representations of Sp(l.n) x H* which are equivalent to T/, ® 75. Here
H* = RY - Sp(1) denotes the group of quaternionic dilations, acting on the
space V; of 7 according to

1.5(h) = |h[P7 (h/|h]) . he H”.

5.3. THEOREM ([HT], Theorem 5.6 and p. 58).

1. (K] )k is equivalent as a \(g)-module to (H] _Jk.

2. (H) )k is a reducible U(g)-module if and only if s € Z, s = 2(I—-n)+1
(mod 2) and s ¢ Rl —p+2. =21+ p—2).

3. Suppose (H] )k irreducible. Then (H; )k is unitarizable if and only if
one of the following nvo cases occurs.:
(a) s =iv, v e R.
(b) se QL—p+2. =20+ p—2).
Case (b) corresponds to the complementary series for Sp(l.n). They exist if
and onlyv if 21 < 2n —1.

The fact that 7; occurs exactly once in 7] |g¢ for the irreducible 77 is
known a priori ([Go], Corollary to Theorem 8, p.522; [Dei], Theorem 3). The
explicit K-module decomposition of (H; )k in [HT], pp.53-54, shows that
this is actually true for all the 77, . The K -submodule of (H) )k equivalent
to 7; is the only element in the “fiber of K-types” over the point (0, 20)
in Diagrams 5.10 and 5.14 of [HT]. It is contained in a unique subquotient
of T;.. which can then be located in the diagrams used to determine the
unitarizability of the various subquotients ([HT], pp.25 and 30). We therefore
obtain the following proposition.

5.4. PROPOSITION. Suppose (H] )x is a reducible A(g)-module and
assume s > 0. The irreducible subguotient of (H) )k in which 7 occurs is
unitarizable if and only if s = 2(I—n)+1 (mod 2) and 21 > s—p+4n—2. That
is, if and only if 21 > 2n—1 and s € {s; = 2(l-n—j)+1: j=0,1,...;5 > 0}.

Let (T}5.H) denote the subquotient representation of 7} corresponding
to the irreducible subquotient of (H; )x in which 7; occurs. Then T;; is an

admissible Hilbert representation of Sp(l.n), and T, (g)v = T, (g)v for all
v € H; (7). Lemma 5.2 yields
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5.5. COROLLARY. Let E(t;) denote the projection of H;; onto the
K -isotypic subspace of type 1. Then

1
(5.43) Cs(g) = 4 tr[E(T)T1,5(9)] -

(T1s,H;s) is infinitesimally equivalent to a unitary representation if and
only if the corresponding irreducible subquotient of () )x is unitarizable.
The following theorem is thus a consequence of Theorems 5.1 and 5.3 and
of Proposition 5.4.

5.6. THEOREM. (;s; = (;_s is positive definite if and only if one of the
following cases occurs :

1. s=iv, vekR.
2. If2l>2n—1: £s=s:=2(l—n—j)+ 1 for integers j > 0 so that
s; > 0. (discrete series)

3. If20<2n—-1: s€eRl—p+2,-2l4+p—2). (complementary series)

The situation for s real and nonnegative is represented in Figure 6.1.

6. THE T7;,-ABEL TRANSFORM

Proposition 3.2 proves that the 7;-Abel transform is a *-homomorphism
of D(G; x;) into the convolution algebra D, (R) consisting of the even C
functions on R with compact support. The main theorem of this section states
that the 7;-Abel transform is also a bijection of D(G;x;) onto D, (R), and
gives a formula for its inverse.

Identify A with R under the map ¢ +— a,. Restriction to A then identifies
D(G; x) with Dy(R). Let D([1,00)) denote the set of the compactly
supported C*° functions on [1,00) (right differentiability at 1 is considered).
Define a map H by

(Hf)(cosh 1) := f(a;) = f(2)
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21

2n + 2k
2n+2k—1

0 12 3 p—2 2k 2k+1 s

FIGURE 6.1

Positive definite (;; for real s > 0

for f € D(G;x;). Lemma 2 and its corollary in [Rou] imply
6.1. LEMMA. H is a bijection of D(G;x;) onto D([1,00)).

For every pu € C with Ry > 0, the Weyl fractional integral transform of
v € D([1,00)) is defined by

1 oo
(6.44) W, p(x) = —/ Wu—x)*"du, x €[1,00).
Analytic continuation of W, to Ry < 0 is obtained via repeated integration

by parts of (6.44): for every integer m > 0

W) = Fm | gen® G0
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For every integer m > 0, the Gegenbauer transform (of dimension 4) of
@ € D([1,00)) is defined by

649 Gupw = -0 [o0Cy (4)6F ~idbxax, welt o0,

where

L (y) — 31—y
(6.46) Ch ) = Gm + DF (=, m +2; 55—

is the Gegenbauer polynomial of indices (1,m) (cf. e.g. [ET], 3.15 (3)).

6.2. LEMMA ([K1], Theorem 3.2; [Dea], Formulas (28) and (29)).

1. For every p € C, W, is a bijection of D([1,00)) onto itself. The
inverse mapping of W, is W_,.

2. For every integer m > 0, G,, is a bijection of D([1,00)) onto itself.
The inverse mapping of G, is given by

(oo}

—1 _ 1 1 d1p 1 (YN, 2 24
(6.47) G Y(x) = —m; /ELF(M) C <;)(H —x°)2 du

X

for all ¢ € D([1,00)) and all x € [1,00).

6.3. THEOREM. The T1;-Abel transform is a bijection of D(G;x;) onto
D (R). It can be written as the composition

(271.)201 —1)

A= 72 H ' oWsy20GyoH,
!

and its inverse is given by
2
-1 _ d
(27)2n—1)

Moreover, the support of the restriction to A = R of f € D(G; x;) is contained
in [—R,R] if and only if the support of A)f is contained in [—R,R].

Al H 100Gy oWy 5, 0H.

Proof. Identify the set of pure quaternions w =ib+jc+kd € H with
R3, and H* ! with R**~ D If z € H*!, then —[z,z] = |z|* is the square
of the Euclidean norm of z in R*" V. For a, € A and n = n(w,z) € N we
have

(an),, = cosht + e'(w + 1|z)?).

Let f € D(G; x;). Applying Lemma 3.3 and Formulas (1.5), we obtain
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Aif () = ——ep’ /f(atn) dn

= e | xl( (e )Hf(i(afn)oob dn
N

dz I(al‘n)ool
L / cosht + e'(w + %lz\z) >
B d—ﬁe / X | cosh + ef(w + 3|z|?)]

x Hf (| cosht + €' (w + HzH))) dzdw

// ( cosh + 3¢l >
(cosh 1 S22 + w2}

R4(n D R3

x Hf ([(cosht + Le'|z|?)* + ¥ |w|?1?) dz dw

(by Formula (4.40))

4” L / / ( cosht + |X|? >
[(cosh + |X|2)? + |Y|?]2

Ré—1) R3

« Hf([(cosh t + [X|2)? + [Y*17) dX dY

(by substituting X = Le?z, ¥ = e'w)

p / / ( cosht+ r? >
T T -2 [(cosht + r2)? + $2]>

x Hf([(cosht + )2 + s2]2) F*" 552 ds dr

(by passing to spherical coordinates in R**~D and in R?)



242 G. VAN DIJK AND A. PASQUALE

_ 2 / 7C HF([1? + s17) s% ds
E r(zn—z) 2 [uz+52%
0

cosht

X (u — cosh )*" 2 du

(by setting u = cosht + r?)

(6.48)
22nﬂ.2n l -

- H — 5 _ n—

4T (2n — 2) / sz< ) If(x) (x> — u?)2xdx [(u — cosh > 3du

cosht Lu
(by setting x = [u? + 52]2)

(2r)2n=D) /Oo -
- H . h n

2T(2n— 1) (G Hf )(w) (u — cosh )™~ du

cosht

2T 2(n—1)

= (——)dz—_ Wan—2 Gau Hf (cosht)
I

m*e=b

=T (H™ ' Whn_s Gy HF)(®),
I
1.e.
27 )20—1)
./4[ = '(L—z(H—l O WZn—Z o ng OH) .
I

The inversion formula immediately follows from Lemma 6.2.

The restriction to A = R of f € D(G;x;) has its support suppf
contained in [—R,R] if and only if suppHf C [1,coshR]. Moreover, if
supp C [1,coshR], then suppW,¢, suppGnp and suppG, ‘¢ are also
contained in [1,coshR]. The last statement then follows from the formulas

for A; and A1~1. ]
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The 7;-spherical transform of f € D(G; x;) is the function f, on C defined
by

Fis) = / f(@)Gsg)dg,  seC.
G

Let &§: f — ]?1 denote the 7;-spherical transform, and let F denote the
Fourier-Laplace transform on R. Formulas (3.20) and (3.22) yield

(6.49) Si=FoA.

Let in(R) denote the set of even functions # on C which are entire
rapidly decreasing functions of exponential type R : for every integer N > 0
there 1s a constant Cy > 0 so that

h(s)| < Cy(1 4 [s)~™NeR® for all s C.

Set Hi(R) := Uzpsg J{i (R). Theorem 6.3 and the Paley-Wiener Theorem for
the Fourier-Laplace transform of even functions on R prove the following
theorem.

6.4. THEOREM (Paley-Wiener Theorem). The 7;-spherical transform is a
bijection of D(G; x;) onto H(R). Moreover, the restriction of f € D(G; x))
to A =R has support in [—R,R] if and only if f, € fH:(R).

We conclude this section by observing that the 7;-Abel transform is related,
as one should expect, to the Abel transform of [K2], §5.

Reversing the order of integration and substituting x = cosh7 and
u = coshw, we obtain from (6.48)

oo

(6.50) Aif(t) = /A,(z‘, (1) dr
where
Qm>—t / cosh w 1
A — 1 2 . 2 g
(¢, T) d131“(2n 2 s1nh(27-)/C21<COShT>(cosh T — cosh” w)
t

X (coshw — cosh#)? 3 sinhw dw .

o cosh 7 — coshw .
Substituting also y = and setting

cosh 7™ — cosht

coshT — cosht 2n—1
A7) = and K= T
2cosht dPT(2n — 2)




244 G. VAN DIJK AND A. PASQUALE

we get from Formula (6.46)

Al(t, ) = V2 K; sinh(27)(cosh 7 — cosh t)2”~ 2 (cosh 7')%
]

< / C (1 = 2y(t, Pyt (1 — 3?31 — 4, W) dy
0

= V221 + 1K; sinh(27)(cosh T — cosh £)¥*~ 2 (cosh 7)?
1

3 1 3 1 1
F<_ 2 __2 T a T 5 . 27’1—3 _ '2‘ .
x/ S 2L -2 2 2,7(t,7)y)y (1 =) — (¢, 7)y)2dy
0

If we now apply the relation ([E*], 2.9(2))
(6.51) F(a,b;c;2) = (1 —2)° “°F(c—a,c—b;c;2)
and Bateman’s Formula ([ET], 2.4(2))

1
I'(c) / —1 ——
6.52 F(a,b,c;z) = —x)° , b s;
(6.52) (a,b;c;2) TG — o) X7 (1 —x) F(a,b;s;xz) dx
0
for Re > RNs > 0,z # 1, |arg(l — 2)| <,

we finally obtain

oM ] 1
653) Al = =D 1 Gih@r) (coshr — cosh 3 (cosh )}

2T(2n — 3) d?

3 1 1
F{=-+2,-2]—=2n— = .
X <2+ s [ 2’ n 277(t77—)>

The comparison of Formula (6.53) with the kernel Aj,_; 241(¢,7) 1n [K2],
Formula (5.60), gives

(6.54)

At )_1 ! (W>2n ! 2% (cosh )™ A (¢, 7)
= —— (- e T n— 5 F
iz, T 2d12 1 T2n) 2n—1,21+1

= 27 C)(cosh 7)™ Agy_1.0141(8,7)

where we have set

1 1 m\2n 1
(6.52) C "—‘am(z) ran




HARMONIC ANALYSIS OVER Sp(1,n)/Sp(1) x Sp(n) 245

7. THE PLANCHEREL FORMULA

Let L; denote the differential operator

P2 4I(l + 1)
d2+[(4n——1)cotht+3tanht]g“ “cosht

Proposition 4.3, Part 3, and Formula (4.39) prove that the restriction to A=R
of the 7;-spherical function (;; is the unique solution to the differential
equation

(7.56) L=

(7.57) Liu = (s* — p*)u

satisfying u(0) = 1 and #/(0) = 0. If s is not an integer, two linearly
independent solutions of (7.57) are also the functions ®; 4, defined by

(7.58) cbz,i_s(t):(2cosht)is—PF(p:2F 4, p—j— 1 11 F 51— tanh? ).

(;s is an even function of s € C. Therefore if s € C \ Z there exists a
constant ¢;(s) so that

(7.59) Cs = c1(8)P; 5 + c1(—85)D; s .

Formula 2.9(33) in [E™] gives ¢(s) explicitly as the meromorphic function

I'2n)I'(s)

= QP
(7.60) M= TEE (om0

The function ¢; determines the Plancherel measure for the ;- spherical
transform. We immediately give the information that will make this measure
explicit.

On the domain § = {s € C : s > 0}, the function ¢,(s) has a simple

pole at s =0 and, if 2/ > 2n — 1, ¢/(s) also has simple zeros at the points
of the set

(7.61) Dy = {5; = 2(~j+1)—p=2(—j—n)+1: j=0,1,... and 5, > 0}.

1

The singularity of ¢, at —s; can be removed by setting

T(2n) ResI(=9)

p(_p_%ﬁH) ResT (2% —1—1)

ci(—s;) =207
LT —n+1) —j)
FRn+HTrl—-n—j+1)°

(7.62) —2PHsi(—1y
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Since
Res [_1_} 25 (_1y I'21+ 1'—j) . 7
s=s5; | c;(s) Iren)li'2(l—n—jH+DIG+1)
we obtain from (7.62)
(7.63)
1 27 T(G+2n) TQRI+1-)) .
ersjs- [cl(s)cl(—s)} S T@n)? T(G+1) TQRUI—n—j))+ 1)[2(l =)

Setting o = 2n — 1, we can rewrite these residues in terms of the shifted
factorials

(@) :=ala+1) - --(a+a—-1)

as

G+ Da@U—=n+1) = )a

(7.64) Res @

1
=5 [Cz(S)Cz(—S)

Moreover, if s € R, then ¢;(—is) = ¢;(is) and

(7.65) |ewis)| 2 = 1%(_220)2 ssmh(m)lr(p+” )‘ lr(”+ls—z—1>|2.

} = 272" [2(I—n—))+1]

We have let the parameter [ range in the set N/2. Nevertheless, the explicit
formulas for the functions ¢; s, @, and ¢; allow us to consider / as a complex
variable. Indeed, Formulas (4.39), (7.58) and (7.60) show, respectively, that
for every fixed t € R, (; is holomorphic in (/,s) € C?, for fixed ¢ > 0, D,
is holomorphic in (I,s) € C?, and that ¢;(s) is an entire function of [ € C
and a meromorphic function of s € C.

Because of Remark 2.3 and Formula (1.6), for every f € D(G;x;) we
have

(7.66) fi9) =G / Ja)Gs(DA() dr
0

where C; is given by (6.55) and f(¢) := f(a,). Formula (7.66) can be employed
to define f, for every [ € C and every f € D, (R). Morera’s Theorem then
implies that ]?l(s) is a holomorphic function of (/,s) € C*.

Lemmas 2.1, 2.2 and 2.3 in [K1] prove:

1. For each r > 0O there is a constant K, > 0 such that
(7.67) ()| 7! < K1+ [s)>

if $s >0 and ¢(s") #£0 for | —s5| < r.
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2. For each § > 0 there is a constant K5 > 0 such that
(7.68) @, ()] < Kse™Fster
if Rs >0 and > 6 > 0.

3. There exists a constant K > 0 such that

G (B)] < K(1 4 1)elPl=or
for all + > 0 and all s € C.

L, is a symmetric operator on the space L?(A(f) df) of functions on (0, 0c0)
which are L?-integrable with respect to the measure A(r)dt. Greeen’s Formula
and Equation (7.57) satisfied by (;, give for every /,s € C and f € D (R)

LION(s) = (8" = p*)'F (s)
where L} = L;0---0L;. Note that, for k > 2n, Lif(f) A(r) is continuous and
e ——

n times

compactly supported on [0,00). If suppf C [—R, R], then (7.68) gives

169) (2~ VT < / LIFOICL0AW) di < Cel™IF
0

for some constant C > 0. The above estimates allow us to conclude: for
every r >0 and 6 > 0O there exists a constant K, s > 0 so that

r Dt (t _ 1 B
(7.70) |f1(,u + i,/)M_Q < K s(1+ |p+ Wl)Zn—,_ﬁ—Zne(R—r)p, ot

cl(p +iv)

if pw>0, ¢(s")#0 for |s/ —(u+iw) <r,and 1t >6§>0.
Let D; be as in (7.61), and set

{maXD;:2(Z—n)+1 if 21> 2n — 1
o =

0 otherwise.

Fix p; > po and define for ¢ > 0

1

~ i dv
e /f;(m + i)®; i (1)

ci(py + iv)

7)) @ =

where C; is given by (6.55). Observe that the integrand is a meromorphic
function of p +iv € C with singularities given by those of cfl. Because of
(7.70), Cauchy’s Theorem gives

dv

+oo
AN 1 N
7. V) = —— ; . -
( 71) (f])/ (t) 2’/TC[_/ f](:UJ+ ZV)(DI,—M—U/(Z) C[(,U,‘f- ”/)

for every u > po. Letting 1 — 400, we find that ()?l),v(t) =0 for t > R.
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7.1. THEOREM (Ihversion formula, first form). For every [ € C,
feEDLR) and t >0

(7.72) fO=F) 0.

Proof. Since (]?Z)}/ is an entire function of [, it is enough to establish
(7.72) when 0 <2/ < 2n— 1. In this case, (7.71) holds also for © = 0. We
then have to prove that for all # >0

(7.73) f@ =

/f[(”/)gl ll/(t)

2Cz |()12

The method of Gangolli-Helgason-Rosenberg applies to this purpose without
essential modifications. We therefore only sketch the proof, and refer to [Ros]
and to [GV], §6.6, for the details.

Endow D(R) with the usual inductive limit topology, and consider D, (R)
with the induced topology. Then the assignment

1 OOA_ dv
T(f) = 57;61 /fz(”/) m7 F€DLR),

defines a distribution 7 on D (R). As in the case of K -bi-invariant functions,
it is possible to show that 7' is indeed a measure, and hence there is a constant
C so that

(7.74) Tf = Cf(e)  for all £ € DL(R).

If fe€Dyi(R), so does its generalized translate

TTf(t) - /Oof(u)Kl(ta T, u)A(u) du )
0

where the kernel K;(t,7,u) is as in (4.42). T.f satisfies T.f(t) = T,f(7),
Tof =f and, because of (4.41),

THNs) = Co(T)f(s),  s,1€C,TER

Since T,f(0) = f(t), Formula (7.72) follows from (7.73) provided C = 1,
which can be proven true in the same lines of [Ros], p. 147. (]
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7.2. THEOREM (Inversion formula, second form). Let D; be the set defined
by Formula (7.61) if 21l > 2n—1 and D; = @ otherwise. Let C; be the constant
in (6.55). For every f € D(G; x;) and g € G,

1 1 -~
(7.75) flg) = G ;, [R—S W_'—)} ()G (9)

/f (lS)Cl zs(g)

2 21C jci( S)iz

Proof. Fix pu > o, and let ~, be the rectangular contour of vertices +iR
and p + iR. Integrating the function

1 fl)®y (1)
27TC1 C[(S)
along v, and letting R — oo, we obtain from (7.70), (7.61) and Theorem 7.1

(7.76)

flay =~ 3" [Re 2B 2y L [ s
Clt—c S lj -Ool L

ds
F o L Cz(‘) 2w C c(is)
for all + > 0. Equation (7.59) therefore proves the claim for ¢ = a,, t > 0,
and hence for all ¢ by continuity and evenness of the functions on both sides
of (7.75). Formula (7.75) thus holds for arbitrary g € G because of (2.14)

and (3.24). [

Since (, = Cs, the usual trick of replacing f with f* % f in (7.75)
evaluated at e gives the Plancherel formula.

7.3. THEOREM (Plancherel Theorem). Let D; and C; be as in Theo-
rem 7.1. Define a measure o; on iR, UD; by

' 1 1
wwukmmmwwjﬂ@f——hw

‘op, L= als)ei(=s)

1 O
* 27C ./0 9(is) |cl(ls)|2

Let L*(G;x;) denote the closure of D(G;x,)) in L*(G), and let L*(do)) be
the space of L2-im‘egmble functions on iRy U D, with respect to the measure

do;. Then the map f — f | extends to an isometric isomorphism of L*(G;y;)
onto L*(do)) :

(7.78) /V@ﬁm=/ If ()| doi(s)
JG JiRUD,
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The techniques employed to prove the inversion formula (that is, Koorn-
winder’s analytic continuation argument and the change of contour of integra-
tion) are the same used in [Shi] for the case of Hermitian symmetric pairs.
Our choice of this method of proof is motivated by the propaedeutic nature
of this paper. In fact, the computations involved in the proofs presented above
are very much in the spirit of those required for the decomposition of the
canonical representations in [DP].

We just mention a few alternative methods. First of all, because of Formula
(7.74) and Part 3 of Proposition 4.3, the spectral theorem for the 7;-spherical
transform can be deduced from the spectral theorem for the differential operator
L; (see (7.56)) on a suitable domain in L?*(A(f)df) on which it is self-adjoint.
The latter theorem can be classically determined as an application of the Weyl-
Titchmarsh Theorem. A second method is obtained observing the relation,
ensured by Formula (4.39), between the 7;-spherical transform and the Jacobi
transform. Theorems 2.3 and 2.4 of [K2] are then quickly translated to our
situation. Finally, observe that Koornwinder’s method with the Abel transform
can also be applied directly here because of Formula (6.54).
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