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The map D (C{D).sd) defines a one-to-one correspondence between the

set of relative effective Cartier divisors on X/T and the isomorphism classes

of pairs (£,s), where C is an invertible sheaf on X and s is a global section

of C such that the map s: Ox ^ £ induced by the section s is injective and

Cjsöx is Or-flat.
The proof of the following lemma is straightforward and is left to the

reader :

Lemma 2.2.

(a) If D\ and Do are relative effective Cartier divisors on X/T, then so
is D\ + £>2-

(b) Let Di and Di be two relative effective Cartier divisors on X/T and
let T{D\) and TifDfi) be their ideal sheaves. If T{D\) C T(Di), then D\ — D%

is also a relative effective Cartier divisor on X/T.
(c) Let T' —* T be a base extension and let X' — X xT T'. If D is

a relative effective Cartier divisor on X/T, then its pull-back to a closed
subscheme D' of X' is a relative effective Carder divisor on X'/T'.

Lemma 2.3. Assume q: X —» T is flat. Let T be a coherent sheaf of
ideals of Ox and let D be the closed subscheme of X defined by T. If for
every point x G D, the ideal Tx of Ox.x is generated by one element gx
whose image in öx.x k(q(x)) is not a zero divisor, then D is a relative
effective Carder divisor.

Proof. It suffices to show that gx is not a zero divisor in Ox.x and
that Ox,x/(gx) is flat over 0T)Cjix). This follows from [EGA] §0.10.2.4 by
taking A OTMx), B Ox.x, M N Ox,x, and u: M - N to be the
homomorphism gx : Ox,x Ox.x defined by the multiplication by gx.

3. The construction of a birational group

Let X be a nonsingular irreducible projective curve over an algebraically
closed field k. A modulus m supported on a finite subset S of A is a divisor
of the form m £ nPP with each nP > 0. For any rational function f on

pes J

X, we write / 0 mod m if vP{f) > nP for every P e S, where vP is the
valuation defined by P. Two divisors D\ and Di on X prime to S are called
m -equivalent if there exists a rational function / satisfying 1 0 mod m
such that D, - D-, (/). If this holds, we write Dx Define a ringed
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space (Xm,öxm) as follows: The underlying set of Xm is (X — 5)U{ß}-
Define

°xm,Q k+{f \f 0 mod m}

and for every x G X — S, define öxm ,x &x,x • One can show that when

deg(m) >2, the ringed space Xm is a singular curve with a unique singular
point Q and its normalization is X. (It is easy to see that when deg(m) < 2,
the ringed space Xm is identified with X itself.) For a divisor D of X prime
to S, we put

Lm{D)H°(Xm, Cm),Hx {Xm

where Cm is the invertible sheaf on Xm corresponding to D. Denote the

dimensions of Lm(D) and Im(D) by lm(D) and im(D), respectively. The
Riemann-Roch theorem states that

/m(D) - im(D) deg(D) + 1 - tt

In this formula, tt is the sum tt g + 6, where g is the genus of X and
6 deg(m) — 1. All these results are proved in [S], Chapter IV.

For convenience, a closed point on a scheme is just called a point.
Let T be a connected &-scheme. Consider the Cartesian square

Xm x 7 > Xm

4 I
T > spec(&)

Since Xm is proper and flat over spec(fc), the morphism q is also proper and

flat. Let D be a relative effective Cartier divisor on (Xm xT)/T supported on

(Xm — Q) x T and let C be the invertible sheaf corresponding to D. Applying
Theorem 1.1 (a) to the morphism q and the invertible sheaf C, we conclude
that t ^ x(£r) is a constant function on T. By the Riemann-Roch theorem,

we have x(£r) deg Dt + 1 — tt So deg(Dt) is also a constant. This constant
is called the degree of D. Denote by Div(w)(T) the set of all relative effective
Cartier divisors of degree n on (Xm x T)/T supported on (Xm — Q) x T.

Let (X — S)(w) be the n-th symmetric power of X — S, i.e., the quotient
of (.X — S)n by the action of the n-th symmetric group 6n, where &n acts

on (X — S)n by permuting the factors. In the Appendix we show that there

exists a relative effective Cartier divisor V G Div(n)((X - 5)(,î)), called the

universal relative effective Cartier divisor, whose restriction to the fiber of
the projection Am x (X - S)(n) - (X - S){n) at Pi + • • • + Pn G (X — Sfl) is

the divisor Fj + • • • -f Pn of Xm. Moreover, we have
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PROPOSITION 3.1. The functor T ^ Div(77)(P) from the category of k-
schemes to the category of sets is represented by the symmetric power (X—Sfn).

More precisely, for any relative effective Cartier divisor D of degree n on

(Xm x D/T supported on (Xm — Q) x T, there exists a unique morphism

f: T —» (X — S)(77) such that the pull-back of V by id xf is D.

The proof of this proposition is given in the Appendix. The morphism
T — (X - Sfn) can be described as follows : For every t G T, identifying the

fiber of q : Xm x T —> T at t with Xm, we may regard the restriction Dt of
D to the fiber at t as an effective divisor of degree n on Xm supported on

Xm — Q. But this kind of divisor can be thought of as a point in (X — Sfn).
The morphism T —» (X — Sfn>) is just t Dt.

LEMMA 3.2. Let D be a divisor of X prime to S such that im(D) > 1.

Then there exists an open subset U of X — S such that for every P G U, we
have im(D + P) im(D) - 1.

Proof If P f Supp(D) U S, then the dual vector space Im(D + P)* of
7m(D + P) is identified with the subspace of 7m(D)* formed by differential
forms tu G 7m(D)* vanishing at P. Let {tuj,..., uim(D)} be a basis of 7m(D)*.
We can then take U to be the complement of

Supp(7)) U S U {P I ujfP) — 0 for I 1,..., /m(D)}.

Lemma 3.3. Let Do be a divisor of X prime to S of degree 0. Then the
set

yD0 {77 G (X — S)(7r) I lm(D + Dq) 1 and l(D + D0 — m) 0}

is non-empty and open in (.X —

Proof Consider the Cartesian square

Xm x(X- S)^ Xm

4 1

Cx - S)Wt. spec (A:).

Applying Theorem 1.1 (b) to q and the invertible sheaf C on x S)<71)

corresponding to the divisor T> +p*(Dq), where T> is the universal relative
effective Cartier divisor, we conclude that the set
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Vi {te(X- S)(7r) I dim H°(Xmy Ct) < 1}

is open, that is,

V) {DG(X — S)w I 1}

is open. By the Riemann-Roch theorem we have, for any D G (X — S)^,

An (D + Do) > deg(D + Do) + 1 — tt L

So we must have

V, {Z> G (X - S)w I + 1}

If /m(Do) ^ 0, then there exists a rational function / on X such that

(/) -f Do is an effective divisor on X prime to S. This effective divisor must
be 0 since it is of degree 0. Hence /m(D0) lm((/) + A)) An(0) 1. So

in any case we have /m(Do) < 1. By the Riemann-Roch theorem, we have

/m(D0) < 7T. Applying Lemma 3.2 repeatedly, we can find Pi,..,,P/m(A)) in
X - S so that im(D0 + h P/m(D0)) 0- Choose Pim w+ï,..., P^ in
X — S arbitrarily. We have

An (A) + P1 + ' ' • +P/m(D0)) A An(A) + Pl H fP/m(A)) /m(A) LH + ' ' * + Ptt) •

(This can be seen by interpreting im(D) as the dimension of the vector

space of differential forms uj regular at Q satisfying (co) > D.) So we
have An (Do + Pi + • • • + P*) 0. By the Riemann-Roch theorem, we have

An (Do + Pi + • —h Ptt) 1
• Hence Pi -f • • • + P^ is in the set Vi and Vi is

not empty.

Similarly by Theorem 1.1 (b) applied to the projection q: Xx (X — S)^ —>

(.X — S)(n) and the invertible sheaf on X x (X — S)(7V) corresponding to the

divisor V + p*(D0 — m), where p: X x (X — S)(7r) —> X is another projection,
we see that the set

y2 {D e {X-S)(7r)I l(D - m) 0}

is open. Since deg(Do —m) < 0, we have /(Do—m) 0. By the Riemann-Roch

theorem, we have /(Do — m) 7r. Applying Lemma 3.2 repeatedly (but taking
m 0), we can find P\,..., Pn G X—S such that /(D0—m+Pj H hPyr) 0.

Then by the Riemann-Roch theorem we have /(D0 — m + Pj 4 HPn) 0.
So Pi + • • • + Pyr is in V2 and V2 is not empty.

Since (X—S)(7r) is irreducible, the set VD() ViDV2 is open and non-empty.
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Lemma 3.4. Fix a point Po in S.

(a) The set

U {(£>1, D2)(X —S)w x (X - S)M

I lm(D1+D2- nPo) 1, +D2- ttPo - tn) 0}

is a non-empty open subset of X— S)'"' x (X S)'"'.

(b) The set

V {(Dl,D2) G (X - S)x (X - S)w

I lm(D2 - D] +7rP0) 13 1{D2 nP0 - m) 0}

is a non-empty open subset of (X — S)<7T) x (X — 5)'711.

Proof, (a) Let pl ,p2:(X-S)(7r)x (X-S)(7r) -v (X-5)(7r) be the projections

and let (/ 1,2) be the pull-backs by id x p, of the universal relative

effective Cartier divisor V on Xm x (X — .S7 "'. Put E E\ + E2. This is a

divisor on Xm x (X — S)i7T> x (X — S)(7r).

Consider the Cartesian square

Xm x (X - S)(7r) x (X - S)M —^ Xm

?I i
(X - S)(7r) x (X - 5)(7r) » spec(fc)

By the Riemann-Roch theorem, for any D2) G (X — 5,)(-7,") x (X — S)<7T>, we
have

lm(D\ + D2 - 7rP0) > deg(Di + D2 - ttP0) + 1 - 7r 1

that is, for any t G (X-S){7v) x (X-3')(7r), we have /m (Et — ttPq) > 1. Applying
Theorem 1.1 (b) to the projection q and the invertible sheaf corresponding to
the divisor E — p*(Po), we see that the set

U\ {f G (X — S)w x (X - £)w I lm(E, - ttPo) 1}

is open. Similarly the set

u2{tG(X - S)(1T) x (X - S)(n) I - - m) 0}

is also open. Hence the set U U\ fl U% is open.

Applying Lemma 3.3 to D0 — 0, we see that there exists a De (X — S)(7r)

such that lm(D) 1 and 1{D - m) 0. Then (£>, ttP0) is in U. So U is

non-empty. This proves (a).

The proof of (b) is similar and is omitted.
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Definition 3.5. A birational group over k is a nonsingular variety V

together with a rational map m: V x y —>• V, (a,b) i—» ab such that

(a) (ab)c — a(bc) when both sides are defined ;

(b) the rational maps O: (a,b) (a,ab) and T* : (a,b) ^ (b,ab) on V x V

are birational.

PROPOSITION 3.6. There exists a unique rational map

m:(X- S)(7r) x(X- S)M S)M

whose domain of definition contains the set U in 3.4(a) such that m(Z)i,Z>2)
is the unique effective divisor that is m-equivalent to D\ +£>2 — tvPq for any
(£>i,D2) G U. Moreover m makes (X — a birational group.

Proof Keep the notations in the proof of Lemma 3.4. Consider the

Cartesian squares

Xm </'(') > XmxUC Xm x(X~S)S) Xm

14 i 1

spec > U C (X - S)(7r) x S)(n) > spec(Â:).

Let C be the restriction to Xm x U of the invertible sheaf corresponding to

the divisor E\ + E2 — p*(ttPo). By Theorem 1.1 (c) and the choice of U, the

sheaf q*C is invertible. The canonical homomorphism q*q*C C gives rise

to s\ 0Xmxu ® (q*q*Q~l. We claim that the pair {£ 0 {cfiq*£)~x, s)

defines a relative effective Cartier divisor on (Xm x U)/U. According to
Remark 2.1, it is enough to check that s is injective and coker(s) is (9(/-flat.
Since £ 0 (q*q*£)~l is invertible, it is enough to verify st is injective for
all t e U by [EGA] §0.10.2.4, where st is the homomorphism obtained by

restricting .s1 to the fiber of q at t. It suffices to show that the restriction of the

canonical homomorphism q*q*£ —> £ to the fiber of q at t is injective. By
Theorem 1.1 (c) we have q*£(X>ouKt) H°(Xm,£t). So the restriction of the

canonical homomorphism to the fiber is £t)®kOxm ~> £t> Denote this

map by s't ; we need to show it is injective. But we have dimH°(Xm,£t) 1

since t G U. If we fix a nonzero element g G H°(Xmj£{), then s't is identified

with Oxm —> £t a a\-+ ag. This last map is injective since Xm is an integral
scheme and g can be thought of as a rational function. So st is injective.
Hence (£ <S> (q*q*£)~], s) defines a relative effective Cartier divisor. The

restriction of this divisor to the fiber of q at t is the divisor on Xm defined

by the pair (£t,g), which is supported on Xm — Q. So the divisor defined by
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(£ 0 (q*q*£)~\s) is supported on (Xm — Q) x U. By Proposition 3.1 there

exists a unique morphism of varieties m : U (X — S)^ such that the divisor

defined by (£ 0 s) is the pull-back by id x m of the universal

relative effective Cartier divisor V on Xm x (X — S)(7r). For any (D\,D2) E U,

we have lm(D{ + D2 - ttP0) 1 and 1{DX + D2 - ttP0 - m) 0. So there is

one and only one effective divisor m-equivalent to D\ + D2 — ttPo and it is

simply m(D\. D2).

Similarly, using Lemma 3.4(b) and Proposition 3.1, one can show that

there exists a morphism r: V —» (X — S)(7^ such that r(D\,D2) is the unique

effective divisor m-equivalent to D2 — D\ -F ttPo for any (DUD2) E V.

Let us verify that m defines a birational group on (.X - S)(7r). First we

show

m(m(D\, D2), £>3) MA, m(D2,D3))

when (Di,D2), (D2,D2), (ra(Z>i, D2), £>3) and (Dum(D2, £>3)) all belong

to L£ Indeed m(m{D\,D2),D3) is the unique effective divisor m-equivalent
to m(DuD2) + D3 — ttPo, and m(Dum(D2,D2)) is the unique effective

divisor m-equivalent to D1 + m(D2,D3) — ttPq. But m(D\, D2) + £>3 — itPq
and D\ -f m(D2,D3) - ttPo are m-equivalent since both are m-equivalent to

D\ + Lb + £>3 — 2ttPq. So we have m(m(D\, /Jb). ££) m(D\, m(D2, ££)).
One can also verify m(D\,D2) — m{D2:D\) when both (Di,£b) and

(D2,Di) are in U, that is, the operation m is commutative.

Next we show that 0: (D\,D2) 1-» (D\,r(Di,D2)) is the birational inverse

of O: (D\,D2) ^ (£fi,jn(D\,D2)) so that O is birational. Since the operation
m is commutative, the rational map Tb (D\,D2) \—> (D2. m(D\, D2)) is also

birational. Therefore m makes (X — 5)(7r) a birational group.
First we verify O0(Z)i,D2) (DUD2) whenever the left-hand side is

defined. We have

OQ(DuD2) 0(DuKDuD2)) (Dum(Dur(DuD2))).

Moreover m(D\. r(D\, />?)) is the unique effective divisor m-equivalent to
£>1 + r(D\.D2) — ttPq But D2 is also an effective divisor m-equivalent to
D\ + r(I)\. D2) — ttPq since we have

D\ + r(D\, D2) — 7i\P0 ~m £fi + (£b — £>i + 7rPo) — tuPo D2

Hence m(D\, r(£>j, Z)2)) D2 and O 0(£h, D2) (£fi, D2).
Similarly one can show that 0O(£>},D2) (DUD2) when the left-hand

side is defined.
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Note that O is a regular morphism defined on U and 0 is a regular
morphism defined on V. Since

O 0(D!, D2) (D\, D2) and 0 O{Dx, D2) (Di, D2)

whenever the left-hand sides are defined, the maps O and 0 induce regular
morphisms O: Un®~l(V) VnS~l(U) and 0: Vne~](U) Un^~l(V).
To show that O and 0 are birational inverses to each other, it is enough to
check that £/n<D-1(V) and yn0_1(f/) are non-empty.

Note that (Di,D2) G U nO_1(V) if and only if (Dl5D2) G U and

,D2) - D\ 4- ttPq) 1, l(m(D\,D2) - Dx +1rP0 - m) 0.

Since m(D\,D2) Di -f D2 — ttPq, the above equations are equivalent to

lm(D2)= 1, /(D2 — m) 0

Applying Lemma 3.3 to the divisor Do 0, we conclude that the set

Vo {D G (X - S)(7r) I /m(D) 0, KD - m) 0}

is open and non-empty. Since (.X — S)(7r) x (Z — S)(7r) is irreducible, the set

Un((X—S)(7Ç} x vb) is also open and non-empty. This set is exactly UD<&~](V).
So D nO_1(V) is non-empty.

Similarly Un0_1(D) is also non-empty. This completes the proof of the

proposition.

4. From birational groups to algebraic groups

Let k be an algebraically closed field, let V be a connected nonsingular

variety over k, and let m: V x V —» V, (a,b) ab be a rational map

satisfying (ab)c a(bc). Assume the rational maps 0(a,b) (a, ab) and

ThyqZ?) (b,ab) are birational. Then there exist open subsets X®, To, Xy
and Lvp in V x V such that O induces an isomorphism X® To and

induces an isomorphism Zy Y\y. Put Z Z<d H To H Zy H

It is convenient to write the formulae for O-1 and VP-1 as $>~l(a,b)
(a,a~lb) and &) (ba~l, a).
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