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The map D — (L(D), sp) defines a one-to-one correspondence between the
set of relative effective Cartier divisors on X/T and the isomorphism classes
of pairs (L,s), where L is an invertible sheaf on X and s is a global section
of £ such that the map s: Oy — £ induced by the section s is injective and
L/sOx is Or-flat.

The proof of the following lemma is straightforward and is left to the
reader :

LEMMA 2.2.

(@) If Dy and D, are relative effective Cartier divisors on X /T, then so
is D+ D».

(b) Let Dy and D, be two relative effective Cartier divisors on X/T and
let I(Dy) and I(Dy) be their ideal sheaves. If T(D;) C Z(D), then D, — D,
is also a relative effective Cartier divisor on X/T.

(c) Let T" — T be a base extension and let X' = X x7 T'. If D is
a relative effective Cartier divisor on X/T, then its pull-back to a closed
subscheme D' of X' is a relative effective Cartier divisor on X' /T’ .

LEMMA 2.3. Assume q: X — T is flat. Let T be a coherent sheaf of
ideals of Ox and let D be the closed subscheme of X defined by I. If for
every point x € D, the ideal I, of Ox. is generated by one element g,
whose image in Oy R0r . k(q(X)) is not a zero divisor, then D is a relative
effective Cartier divisor.

Proof. 1t suffices to show that ¢, is not a zero divisor in Ox. and
that Ox ,/(gy) is flat over Or,40- This follows from [EGA] §0.10.2.4 by
taking A = Or 4, B = Ox,, M = N = Ox.y, and u: M — N to be the
homomorphism g,: Oy, — Ox,, defined by the multiplication by g,.

3. THE CONSTRUCTION OF A BIRATIONAL GROUP

Let X be a nonsingular irreducible projective curve over an algebraically
closed field k. A modulus m supported on a finite subset S of X is a divisor

of the form m = > npP with each np > 0. For any rational function f on
PES

X, we write f =0 mod m if vp(f) > np for every P € §, where vp is the
valuation defined by P. Two divisors D; and D, on X prime to S are called
m-equivalent if there exists a rational function f satisfying f —1 =0 mod m
such that D; — D, = (f). If this holds, we write Dy ~y Ds. Define a ringed
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space (Xm,Ox,, ) as follows: The underlying set of X, is (X —S) U {Q}.
Define
Ox,o=k+{f|f=0 modm}

and for every x € X — §, define Oy, , = Ox,. One can show that when
deg(m) > 2, the ringed space Xy, is a singular curve with a unique singular
point O and its normalization is X. (It is easy to see that when deg(m) < 2,
the ringed space X, is identified with X itself.) For a divisor D of X prime
to S, we put

Lu(D) = H'(Xm, L), In(D) = H'(Xn, L),

where L., is the invertible sheaf on X, corresponding to D. Denote the
dimensions of Ln(D) and I,(D) by [,(D) and i,(D), respectively. The
Riemann-Roch theorem states that

l(D) — i (D) = deg(D) + 1 — 7.

In this formula, 7 is the sum 7 = g 4 0, where g is the genus of X and
0 = deg(m) — 1. All these results are proved in [S], Chapter IV.

For convenience, a closed point on a scheme is just called a point.

Let T be a connected k-scheme. Consider the Cartesian square

Xy X T — Xn

d l

T —— spec(k) .

Since X, is proper and flat over spec(k), the morphism ¢ is also proper and
flat. Let-D be a relative effective Cartier divisor on (X, x T)/T supported on
(X — Q)X T and let £ be the invertible sheaf corresponding to D. Applying
Theorem 1.1 (a) to the morphism ¢ and the invertible sheaf £, we conclude
that ¢t — x(L,) is a constant function on 7. By the Riemann-Roch theorem,
we have x(L,) =deg D;+1—m. So deg(D,) is also a constant. This constant
is called the degree of D. Denote by Div(”)(T) the set of all relative effective
Cartier divisors of degree n on (Xy, x T)/T supported on (X, — Q) x T.

Let (X —$)™ be the n-th symmetric power of X — S, i.e., the quotient
of (X —S)* by the action of the n-th symmetric group &,, where &, acts
on (X — 8)" by permuting the factors. In the Appendix we show that there
exists a relative effective Cartier divisor D € Div"™ ((X — $)), called the
universal relative effective Cartier divisor, whose restriction to the fiber of
the projection Xpm X (X — )W — (X —H® at Py + -+ P, € (X — ™ is
the divisor Py + --- + P, of X,,. Moreover, we have
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PROPOSITION 3.1. The functor T +— DivT) from the category of k-
schemes to the category of sets is represented by the symmetric power (X —5).
More precisely, for any relative effective Cartier divisor D of degree n on
(Xm X T)/T supported on Xy — Q) X T, there exists a unique morphism
f:T — (X —8" such that the pull-back of D by id x f is D.

The proof of this proposition is given in the Appendix. The morphism
T — (X — 8™ can be described as follows: For every t € T, identifying the
fiber of ¢: Xyu X T — T at t with X,,,, we may regard the restriction D, of
D to the fiber at ¢ as an effective divisor of degree n on X, supported on
X — Q. But this kind of divisor can be thought of as a point in (X — S)™.
The morphism T — (X — $)® is just s D;.

LEMMA 3.2. Let D be a divisor of X prime to S such that i,(D) > 1.
Then there exists an open subset U of X — S such that for every P € U, we
have inw(D + P) = in(D) — 1.

Proof. 1If P ¢ Supp(D)U S, then the dual vector space I,(D + P)* of
Iw(D + P) is identified with the subspace of I,,(D)* formed by differential
forms w € I,(D)* vanishing at P. Let {wy,...,w; (p)} be a basis of I,(D)*.
We can then take U to be the complement of

Supp(D)USU{P [ wi(P) =0 for i=1,...,in(D)}.

LEMMA 3.3. Let Dy be a divisor of X prime to S of degree 0. Then the
set

Vb, = {D € (X = )™ | Iny(D + Dp) = 1 and (D + Dy — m) = 0}
is non-empty and open in (X — S)(™.
Proof. Consider the Cartesian square

X x (X =)™ —L— X

m

/| l

X —=8"  ——— spec(k) .

Applying Theorem 1.1 (b) to ¢ and the invertible sheaf £ on Xy, x (X — §)™

corresponding to the divisor D + p*(Dy), where D is the universal relative
effective Cartier divisor, we conclude that the set
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Vi={te X-8" |dimH" Xy, L) < 1}
is open, that is,
Vi={Dec X8| I(D+ Dy <1}
is open. By the Riemann-Roch theorem we have, for any D € (X — S)(™,
[n(D + Do) > deg(D+ Do) +1—7m=1.
So we must have
Vi={De X5 |la(D+Dy)=1}.

If [w(Do) # 0, then there exists a rational function f on X such that
(f)+ Dy 1s an effective divisor on X prime to S. This effective divisor must
be 0 since it i1s of degree 0. Hence [(Dg) = L ((f) + Do) = [,(0) = 1. So
in any case we have [,(Dg) < 1. By the Riemann-Roch theorem, we have
im(Do) < 7. Applying Lemma 3.2 repeatedly, we can find Py,...,P; (p,) in
X — 8 so that in(Do + Py + -+ P p,)) = 0. Choose P;_ py+1,--.,Pr in
X — § arbitrarily. We have

im(Do+Pi 4+ Pi D) 2 im(Do+ P14+ Pi 0g) +Pipyopy+1 -+ Pr) -

(This can be seen by interpreting i,(D) as the dimension of the vector
space of differential forms w regular at O satisfying (w) > D.) So we
have i (Dg + P; + -+ P;) = 0. By the Riemann-Roch theorem, we have
lw(Do+Py+---+Pr)=1. Hence P;+---+ P, is in the set V; and V; is
not empty.

Similarly by Theorem 1.1 (b) applied to the projection ¢: X x (X — S)™ —
(X — S)™ and the invertible sheaf on X x (X — S)™ corresponding to the
divisor D + p*(Dy — m), where p: X x (X —S8)™ — X is another projection,
we see that the set

Vo={Dec X -5 | D+ Dy—m)=0}

is open. Since deg(Dp—m) < 0, we have {((Dy—m) = 0. By the Riemann-Roch
theorem, we have i(Dy—m) = 7. Applying Lemma 3.2 repeatedly (but taking
m = 0), we can find Py,...,P; € X—S§ such that i(Dy—m~+P;+---+P,) =0.
Then by the Riemann-Roch theorem we have [(Dg—m+ Py +---+P;) =0.
So Pi+ -+ P, 1sin V, and V, is not empty.

Since (X—S)"™ is irreducible, the set Vp, = ViNV, is open and non-empty.
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LEMMA 3.4. Fix a point Py in §S.
(a) The set

U={(D1,Dy) € (X =™ x (X8
] [n(Dy + Dy — mPy) =1, l(D]‘*‘DQ“‘ﬂ’PO—m):O}
's a non-empty open subset of (X — Y™ x (X — 8§,
(b) The set
V={(D,D) € (X - xX—5H"
| [w(Dy — Dy +7Py) =1, Dy — Dy + 7Py —m) = 0}

is a non-empty open subset of (X — $)™ x (X — 8™,

Proof. (a) Let p1,p2: (X—5)™ x(X—S)™ — (X—5)™ be the projections
and let E; (i = 1,2) be the pull-backs by id x p; of the universal relative
effective Cartier divisor D on X, X (X — S)™ . Put E = Ey + E,. This is a
divisor on Xy x (X — )™ x (X — S)™.

Consider the Cartesian square

X X X =P x (X =™ L0 X,

'] l

X -9 xX-85m —— speck).

By the Riemann-Roch theorem, for any (Dy,D,) € (X — )™ x (X —S)™, we
have
[n(Dy + Dy — wPy) > deg(Dy + Dy —7wPy) +1 -7 =1,

that is, for any ¢ € (X —8)™ x (X —S5)™, we have [, (E,—7Py) > 1. Applying
Theorem 1.1 (b) to the projection g and the invertible sheaf corresponding to
the divisor E — p*(Py), we see that the set

Uy={te X=9" x X =85 | l4(E — nP) = 1}
1s open. Similarly the set
Up={te X =" x X~ | (E — 7Py —m) = 0}

1s also open. Hence the set U = U; N U, is open.

Applying Lemma 3.3 to Dy = 0, we see that there exists a D € (X S)™
such that [,(D) =1 and I(D —m) = 0. Then (D,nwPy) is in U. So U is
non-empty. This proves (a).

The proof of (b) is similar and is omitted.
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DEFINITION 3.5. A birational group over k is a nonsingular variety V
together with a rational map m: V x V — V, (a,b) — ab such that

(a) (ab)c = a(bc) when both sides are defined;

(b) the rational maps ®: (a,b) — (a,ab) and Y¥: (a,b) — (b,ab) on V xV
are birational.

PROPOSITION 3.6. There exists a unique rational map
m: (X =9 x (X -H" = X - 85H™

whose domain of definition contains the set U in 3.4(a) such that m(D;,D;)
is the unique effective divisor that is m-equivalent to Dy + D, — 7Py for any
(Dy,D») € U. Moreover m makes (X — S)™ a birational group.

Proof. Keep the notations in the proof of Lemma 3.4. Consider the
Cartesian squares

Xo =q¢ ') — Xn XU C Xp x (X =9 x X -5™ 25 X,

| a | |
spec(k(t)) —— U C X —9HM x (X -9H™  —— spec(k).

Let £ be the restriction to X, x U of the invertible sheaf corresponding to
the divisor Ey + E, — p*(wPy). By Theorem 1.1 (c) and the choice of U, the
sheaf ¢.L is invertible. The canonical homomorphism g*¢.L — L gives rise
to s: Ox. xuv — L ®(g*q.L)~". We claim that the pair (£ ® (g*q.L)"", )
defines a relative effective Cartier divisor on (X x U)/U. According to
Remark 2.1, it is enough to check that s is injective and coker(s) is Oy -flat.
Since £ ® (¢*q.L)~" is invertible, it is enough to verify s; is injective for
all t € U by [EGA] §0.10.2.4, where s, 1s the homomorphism obtained by
restricting s to the fiber of ¢ at . It suffices to show that the restriction of the
canonical homomorphism ¢g*¢.L — L to the fiber of ¢ at ¢ is injective. By
Theorem 1.1 (c) we have ¢.L®p, k() = H(X., £,). So the restriction of the
canonical homomorphism to the fiber is HXom, L)) Q% Ox., — L;. Denote this
map by s, ; we need to show it is injective. But we have dimH° (X, £,) = 1
since t € U. If we fix a nonzero element g € H(X,, £,), then s; is identified
with Ox, — L;, a+— ag. This last map is injective since X, is an integral
scheme and ¢ can be thought of as a rational function. So s, 1s injective.
Hence (£ ® (¢*g+L)~',s) defines a relative effective Cartier divisor. The
restriction of this divisor to the fiber of g at ¢ is the divisor on X,, defined
by the pair (L;, g), which is supported on Xn, — Q. So the divisor defined by
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(L ® (g*q.L)"",s) is supported on (Xy — Q) x U. By Proposition 3.1 there
exists a unique morphism of varieties m: U — (X — $)™ such that the divisor
defined by (£ ® (¢*g«L)~",s) is the pull-back by id x m of the universal
relative effective Cartier divisor D on Xm X (X —S)™. For any (Dy,D») € U,
we have I,(Dy + D, —mPy) =1 and I(D; + D, — Py —m) = 0. So there 18
one and only one effective divisor m-equivalent to D; + D, — Py and it 1s
simply m(Dy,D»).

Similarly, using Lemma 3.4 (b) and Proposition 3.1, one can show that
there exists a morphism r: V — (X — S)™ such that r(Dy,D,) is the unique
effective divisor m-equivalent to Dy — Dy + 7Py for any (D;,D,) € V.

Let us verify that m defines a birational group on (X — $)™ . First we
show

m(m(Dy, D), D3) = m(Dy, (D2, D3))

when (Dy,D»), (D,,D3), (m(Dy,D;),D3) and (D;,m(D,,Ds3)) all belong
to U. Indeed m(m(D;,D»,),D3) is the unique effective divisor m-equivalent
to m(D;,D,) + D3 — wPy, and m(D;,m(D,,Ds)) is the unique effective
divisor m-equivalent to D; + m(D;,,D3) — wPy. But m(D1,D;) + D3 — mPy
and D, + m(D,,D3) — wPy are m-equivalent since both are m-equivalent to
D, + D, + D5 —2nPy. So we have m(m(D,, D,), D3) = m(Dy,m(D,, D3)).

One can also verifty m(Dy,D,) = m(D,,D,) when both (D;,D;) and
(Dy,Dy) are in U, that is, the operation m is commutative.

Next we show that ©: (D, D,) — (D, (D, D,)) is the birational inverse
of @: (Dy,D;) — (Dy,m(Dy,D;)) so that @ is birational. Since the operation
m 1s commutative, the rational map Y¥: (D, D;) — (D,,m(Dy,D,)) is also
birational. Therefore m makes (X — )™ a birational group.

First we verify ®©(D,D,) = (D;,D;) whenever the left-hand side is
defined. We have

DOy, D) = ©(D1, 1(Dy, D7) = (Dy,m(Dy, 1(Dy, Dy))) .

Moreover m(Dy,r(D1,D;)) is the unique effective divisor m-equivalent to
Dy + r(Dy,Dy) — mPy. But D, is also an effective divisor m-equivalent to
D\ + r(D,D;) — wPy since we have

Dy + r(Dy,D;) — mPy ~q Dy 4+ (Dy — Dy + 7Py) — wPy = D, .

Hence IH(Dl,I’(D],Dg)) = D2 and @@(Dl,DQ) = (Dl,Dz).

Similarly one can show that @ ®(Dy,D,) = (D;,D,) when the left-hand
side 1s defined.
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Note that @ is a regular morphism defined on U and © is a regular
morphism defined on V. Since

®OD,Dy) = (Dy,D;) and O D(Dy,Dy) = (Dy,Ds)

whenever the left-hand sides are defined, the maps @ and © induce regular
morphisms ®@: UN®~ (V) — VNO~(U) and ©: VNO~(U) — UN®~ (V).
To show that @ and ©® are birational inverses to each other, it is enough to
check that UN®~ (V) and VN O~I(U) are non-empty.

Note that (Dy,D,) € UN®~(V) if and only if (D;,D,) € U and
[n(m(Dy,Dy) — D1 +7mPy) =1, I(m(Dy,D;) — Dy + 7Py —m)=0.
Since m(Dy, D,) ~w D1 + Dy — mPg, the above equations are equivalent to
(D) =1, 1Dy —m)=0.
Applying Lemma 3.3 to the divisor Dy = 0, we conclude that the set
Vo={DeX - |1,(D)=0, KD—m)=0}

is open and non-empty. Since (X — S)™ x (X — $)™ is irreducible, the set
UN((X—=S)™ x Vy) is also open and non-empty. This set is exactly UN®~ (V).
So UN®~Y(V) is non-empty.

Similarly VN ©~1(U) is also non-empty. This completes the proof of the
proposition.

4. FROM BIRATIONAL GROUPS TO ALGEBRAIC GROUPS

Let k& be an algebraically closed field, let V be a connected nonsingular
variety over k, and let m: V. xV — V, (a,b) — ab be a rational map
satisfying (ab)c = a(bc). Assume the rational maps P(a,b) = (a,ab) and
Y(a,b) = (b,ab) are birational. Then there exist open subsets X, Yo, Xy
and Yy in V x V such that @ induces an isomorphism X¢ =2 Yp and ¥
induces an isomorphism Xy = Yy. Put Z = X N Yo N Xy N Yy.

It is convenient to write the formulae for ®~! and ¥~! as ® (g, b) =
(a,a”'b) and ¥~ 1(a,b) = (ba™!,a).
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