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18 LEI FU

1. A THEOREM OF GROTHENDIECK

The following theorem is a special case of Grothendieck's theorems, and

the proof can be found in [Mu] §5, [H] §3.12, or [EGA] III, §7.7.5, 7.9.4.

THEOREM 1.1. Let q: V T be a proper flat morphism of noetherian
schemes and let C be an invertible sheaf on V. For each t G T denote the

fiber V <&t spec(k(t)) of q at t by Vt, where k(t) is the residue field of T

at t. Denote the inverse image of C on Vt by Ct.

(a) The function t x(A) XX-1)' dim^) A) is locally constant

on T.

(b) For each i, the function t ^ dim^ Hl(Vt, Ct) on T is upper semicon-
tinuous.

(c) If T is reduced and connected and if 11—» dim^ Hl(Vt, Ct) is a constant

function on T, then Rlq*C is a locally free sheaf on T and the map
Rlq*C ®oT k(t) —> Hl(Vt, Ct) is an isomorphism.

(d) If Hl(Vt, Ct) 0 for all t G T, then Rlq*C 0 and q*C is a locally free
sheaf Moreover the formation of q*C commutes with any base change.

2. Relative effective Cartier divisors

Let q : X —> T be a morphism of noetherian schemes. A relative effective
Cartier divisor on X/T is an effective Cartier divisor on X that is flat over
T when regarded as a closed subscheme of X. When T spec(R) is affine,

a closed subscheme D of X is a relative effective Cartier divisor if and only
if there exists an open affine covering U[ — spec(R,) of X and gL G Ri such

that

(a) DnUi-spec (/?//((?;)) ;

(b) Qi is not a zero divisor;

(c) Ri/(gd is flat over R.

Remark 2.1. Let D be an effective Cartier divisor on X/T, let T(D)
be the sheaf of ideals defining Z), and let C(D) be the invertible sheaf

corresponding to D. We have C(D) X(D)~l. The inclusion 1(D) c Ox
induces Ox C l(D)~l C(D), hence a section sD of C(D).
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The map D (C{D).sd) defines a one-to-one correspondence between the

set of relative effective Cartier divisors on X/T and the isomorphism classes

of pairs (£,s), where C is an invertible sheaf on X and s is a global section

of C such that the map s: Ox ^ £ induced by the section s is injective and

Cjsöx is Or-flat.
The proof of the following lemma is straightforward and is left to the

reader :

Lemma 2.2.

(a) If D\ and Do are relative effective Cartier divisors on X/T, then so
is D\ + £>2-

(b) Let Di and Di be two relative effective Cartier divisors on X/T and
let T{D\) and TifDfi) be their ideal sheaves. If T{D\) C T(Di), then D\ — D%

is also a relative effective Cartier divisor on X/T.
(c) Let T' —* T be a base extension and let X' — X xT T'. If D is

a relative effective Cartier divisor on X/T, then its pull-back to a closed
subscheme D' of X' is a relative effective Carder divisor on X'/T'.

Lemma 2.3. Assume q: X —» T is flat. Let T be a coherent sheaf of
ideals of Ox and let D be the closed subscheme of X defined by T. If for
every point x G D, the ideal Tx of Ox.x is generated by one element gx
whose image in öx.x k(q(x)) is not a zero divisor, then D is a relative
effective Carder divisor.

Proof. It suffices to show that gx is not a zero divisor in Ox.x and
that Ox,x/(gx) is flat over 0T)Cjix). This follows from [EGA] §0.10.2.4 by
taking A OTMx), B Ox.x, M N Ox,x, and u: M - N to be the
homomorphism gx : Ox,x Ox.x defined by the multiplication by gx.

3. The construction of a birational group

Let X be a nonsingular irreducible projective curve over an algebraically
closed field k. A modulus m supported on a finite subset S of A is a divisor
of the form m £ nPP with each nP > 0. For any rational function f on

pes J

X, we write / 0 mod m if vP{f) > nP for every P e S, where vP is the
valuation defined by P. Two divisors D\ and Di on X prime to S are called
m -equivalent if there exists a rational function / satisfying 1 0 mod m
such that D, - D-, (/). If this holds, we write Dx Define a ringed
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