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18 LEI FU

I. A THEOREM OF GROTHENDIECK

The following theorem is a special case of Grothendieck’s theorems, and
the proof can be found in [Mu] §5, [H] §3.12, or [EGA] III, §7.7.5, 7.9.4.

THEOREM 1.1. Let q: V — T be a proper flat morphism of noetherian
schemes and let L be an invertible sheaf on V. For each t € T denote the
fiber 'V @7 spec(k(t)) of g at t by V,, where k(t) is the residue field of T
at t. Denote the inverse image of L on V; by L;.

(@) The function t — x(L;) = > (—1)dimyy H'(V,, L) is locally constant

l
on T.

(b) For each i, the function t— dimyy H'(V,,L;) on T is upper semicon-
finuous.

(¢) If T is reduced and connected and if t — dimy H{(V,, L,) is a constant
function on T, then R'q.L is a locally free sheaf on T and the map
Rig.L Ro, k() — H(V,, L) is an isomorphism.

(d) If H(V,, L) =0 forall t € T, then R'q.L = 0 and q.L is a locally free
sheaf. Moreover the formation of q.L commutes with any base change.

2. RELATIVE EFFECTIVE CARTIER DIVISORS

Let g: X — T be a morphism of noetherian schemes. A relative effective
Cartier divisor on X/T is an effective Cartier divisor on X that is flat over
T when regarded as a closed subscheme of X. When T = spec(R) is affine,
a closed subscheme D of X is a relative effective Cartier divisor if and only
if there exists an open affine covering U; = spec(R;) of X and g; € R; such
that

(a) DN U; = spec(Ri/(9))

(b) g; is not a zero divisor;

(c) R;/(g:) is flat over R.

REMARK 2.1. Let D be an effective Cartier divisor on X/T, let Z(D)
be the sheaf of ideals defining D, and let L(D) be the invertible sheaf
corresponding to D. We have L£(D) = Z(D)~'. The inclusion Z(D) C Oy :'
induces Oy C Z(D)~! = L(D), hence a section sp of L(D).
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The map D — (L(D), sp) defines a one-to-one correspondence between the
set of relative effective Cartier divisors on X/T and the isomorphism classes
of pairs (L,s), where L is an invertible sheaf on X and s is a global section
of £ such that the map s: Oy — £ induced by the section s is injective and
L/sOx is Or-flat.

The proof of the following lemma is straightforward and is left to the
reader :

LEMMA 2.2.

(@) If Dy and D, are relative effective Cartier divisors on X /T, then so
is D+ D».

(b) Let Dy and D, be two relative effective Cartier divisors on X/T and
let I(Dy) and I(Dy) be their ideal sheaves. If T(D;) C Z(D), then D, — D,
is also a relative effective Cartier divisor on X/T.

(c) Let T" — T be a base extension and let X' = X x7 T'. If D is
a relative effective Cartier divisor on X/T, then its pull-back to a closed
subscheme D' of X' is a relative effective Cartier divisor on X' /T’ .

LEMMA 2.3. Assume q: X — T is flat. Let T be a coherent sheaf of
ideals of Ox and let D be the closed subscheme of X defined by I. If for
every point x € D, the ideal I, of Ox. is generated by one element g,
whose image in Oy R0r . k(q(X)) is not a zero divisor, then D is a relative
effective Cartier divisor.

Proof. 1t suffices to show that ¢, is not a zero divisor in Ox. and
that Ox ,/(gy) is flat over Or,40- This follows from [EGA] §0.10.2.4 by
taking A = Or 4, B = Ox,, M = N = Ox.y, and u: M — N to be the
homomorphism g,: Oy, — Ox,, defined by the multiplication by g,.

3. THE CONSTRUCTION OF A BIRATIONAL GROUP

Let X be a nonsingular irreducible projective curve over an algebraically
closed field k. A modulus m supported on a finite subset S of X is a divisor

of the form m = > npP with each np > 0. For any rational function f on
PES

X, we write f =0 mod m if vp(f) > np for every P € §, where vp is the
valuation defined by P. Two divisors D; and D, on X prime to S are called
m-equivalent if there exists a rational function f satisfying f —1 =0 mod m
such that D; — D, = (f). If this holds, we write Dy ~y Ds. Define a ringed
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