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5. The Lagrange top and the non-linear Schrödinger equation

Our final remark concerns a previously unknown relation between the real

solutions of the Lagrange top and the one-gap solutions of the nonlinear

Schrödinger equation

(NLS± Uxt ±2\u\'u

In the physical applications both forms of {NLS) are of interest. Comparing
Theorem 2.2 to the results of Previato [20] we note that the invariant manifolds

of one-gap solutions of the NLS equation are isomorphic to the invariant

manifolds of the Lagrange top. This relation can be made explicit if we

compare the expressions for the solutions found in Theorem 3.4 to the well
known formulae for u(x. t) (cf. [5. 20]). We shall see that the S^-real solutions

of the Lagrange top give also one-gap solutions of NLS- equation. Recall

that, according to the preceding section, an -real solution is a usual real

solution of the Lagrange top (2). and that an S^-real solution is a real solution
of the system (60).

Let XE. Xq? be the Hamiltonian vector fields (2) and (3) respectively and

put

2; AE- 2 I(m _ DQ3X£ + 1

(2/,3 - (3/77 +

As and Jy define translation invariant vector fields on the generalized
Jacobian /(CV. oc111) then fixing an arbitrary point for origin we may introduce
(.v. t) coordinates on J{Ch: oc (and hence on the complex invariant manifold
T/j). If the real part Tf of Th is not empty, then we shall choose for origin
a real point. As the real vector fields J2 m(y JL are tangent to the Liouville
torus Tf. then (v. t) provide real affine coordinates on it. Denote, lastly, by
u~{x.t) the restriction of the function eLli +eQ.2 on the Liouville torus Tf
of the Lagrange top (2).

Similarly, let u~{x.t) be the restriction of the function eQ.[ TeLL on a
connected component of the S^-real part of J(Ch:oc±). If the origin belongs
to this component too. then as above we conclude that x.t G R.

Proposition 5.1. The functions iN{x.t) and u~(x.t) satisfy NLS+ and
NLS~ respectively.

The proof of the above Proposition is a straightforward computation
(compare with [20], Theorem 2.2). From the definition of u± we get
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u — e Q2 + ßi and u+ — —e ß2 — e Qi. It follows that | m± |2 =F(^i + ß2)
and it is easy to check that

u^ - iuf ± 2\u^ J2u±

is equivalent to the system

(Qj)« + (Û2)f ±2^(0? + 0|)
=±2Q2(£2? + fli)

where £2i,n2 are defined on the 5^-real part of Th respectively. Using (2)

we get for the derivatives along Xe

Qi + (m — 1)QSQ2 - —mQi^3 — Oil^

and as

T3=l2 (ß? ^2 (1 ~h m)Q%) — E,

then

Qi + (m - 1)^3^2 ~^ßi(ß2 + ß2) + ßi (^ - ^ß*) •

Finally, as Xq3H2 — Q.\ we conclude that

(ßi)xx + (^2)t —2Qi(Q^ + ÇI2)

(£22)„-{n1)r -2i22(n? + ni).

This proves also that is a solution of NLS+ (we just have to substitute

Qi /Qi, ^2 ^ ^2)- n
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