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5. THE LAGRANGE TOP AND THE NON-LINEAR SCHRODINGER EQUATION

Our final remark concerns a previously unknown relation between the real
solutions of the Lagrange top and the one-gap solutions of the nonlinear
Schrodinger equation

s , 2
(NLS™) Uy = 1, == 2]uj"u.

In the physical applications both forms of (NLS) are of interest. Comparing
Theorem 2.2 to the results of Previato [20] we note that the invariant manifolds
of one-gap solutions of the NLS equation are isomorphic to the invariant
manifolds of the Lagrange top. This relation can be made explicit if we
compare the expressions for the solutions found in Theorem 3.4 to the well
known formulae for u(x. 1) (cf. [5. 20]). We shall see that the S* -real solutions
of the Lagrange top give also one-gap solutions of NLST equation. Recall
that. according to the preceding section. an S~ -real solution is a usual real
solution of the Lagrange top (2). and that an ST -real solution is a real solution
of the system (60).

Let Xp. Xq. be the Hamiltonian vector fields (2) and (3) respectively and
put ,

— = 3Xg. % = 10n — DQ3Xg + § (2hs — Bm + DQ3) Xq, .
As g—\ and % define translation invariant vector fields on the generalized
Jacobian J(Cj: >™) then fixing an arbitrary point for origin we may introduce
(x.1) coordinates on J(Cj: =) (and hence on the complex invariant manifold
Ty). If the real part T }f of Tj, is not empty. then we shall choose for origin
a real point. As the real vector fields % and % are tangent to the Liouville
torus TR. then (v.r) provide real affine coordinates on it. Denote, lastly, by
u— (x.1) the restriction of the function €Q; + ¢Q> on the Liouville torus T,lf
of the Lagrange top (2).

Similarly. let u7(x.r) be the restriction of the function €Q; + €, on a
connected component of the S -real part of J(C;: >c®). If the origin belongs

to this component too. then as above we conclude that x.7 € R.

PROPOSITION 5.1.  The functions u™(x.1) and u™(x.1) satisfy NLS™ and
NLS™ respectively.

The proof of the above Proposition is a straightforward computation
(compare with [20], Theorem 2.2). From the definition of u® we get
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BT =€Q+eQ) and ut = —€Qy — e Q. It follows that {ui|2 = F(QI+3)
and it is easy to check that

ut = iufb + 2|ui yzui

is equivalent to the system
Qx4 (Q2)r = 20,(QF + Q3)
(Q)ax — (Q1)r = £20,(QF + Q9)

where Q;,Q, are defined on the S*-real part of T} respectively. Using (2)
we get for the derivatives along Xg

Ql + (m— 1)Q3Q2 = ~mQIQ% — QI3

and as
=3+ +1+mQ3) —E,

then
Q)+ (m— D3 = —101(QF + Q) + Q) (E — 22HQ3) .
Finally, as Xg,0 = —€; we conclude that

Qe + () = —2Q(QF + Q)
() — (1) = —20,(Q% + Q3).

This proves also that u™ is a solution of NLST (we just have to substitute
Ql = lQl 5 Qz — ng) D
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