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156 L. GAVRILOV AND A. ZHIVKOV
4. REAL STRUCTURES

Recall that a real algebraic variety is a pair (X,S) where X is a complex
algebraic variety and S: X — X is an anti-holomorphic involution on it. The
set of fixed points of S is the real part of (X,S). S acts on the group of
divisors Div(X) : if D € Div(X) is defined locally by analytic functions f,,
then S(D) is defined by the analytic functions f, oS. Thus it is natural to
define an involution S* on the sheaf of analytic functions Oy

S*:T(S(U),0x) = T(U,0x) : f—foS.

This also induces an involution on the groups of one-forms and one-cycles.
If we H(X,Q"), c € Hi(X,Z), then [ S*w = [ w. A form w is S-real
if and only if $*w = w and one may always choose a basis of S-real forms.
In the case when X = Cj is the spectral curve of the Lagrange top, the
action of S on Div(X) induces an involution on J(Cj;co*). This, however,
does not suffice to determine the real structure of the invariant manifold
Ty, ~ J(Cy; 00¥) \ ¢~ 1(p) (Theorem 2.2), as it will also depend on the point
p € J(Cp). Recall that the symmetric product S2C, is bi-rational to T},. Thus
the generalized Jacobian and the invariant manifold 7j are identified by the
Abel map

(59)  A: S?Cyp — J(Cpy00T) 1 Py + Py — W, w = (w1, w,) .
Wi +W,

This induces an involution on J(Cj; c0%), z — S(z), where

Pi+P; S(P1+Py)
7= / W, S() = / w .
Wi+W, Wi+W,
Of course this depends on the fixed points Wi, W, & J(Cp; 00%). Let wy,wy
be S-real . Then '

S(W+Ws) S(Py+Py) S(Wi+W2) P\ +P;
S(z):/ w+/ w:/ w+/ w = S0)+z.
S

Wi+W, (W1 4+W2) Wi +W, Wi +W,

If S has a fixed point on J(Cp; 00t) (this does not depend on W;, W,) then
one may always choose it for origin, and hence S(z) = Z becomes a group
homomorphism.

Denote by S the anti-holomorphic involution on the spectral curve Cj
defined by S(\, 1) = (A, —f). This involution comes from the real Lax pair
of Adler and van Moerbeke defined in Section 2. We shall also suppose that
the real polynomial f(\) has distinct roots. S induces an involution on the
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usual Jacobian J(Cj,) which we also denote by S, and an involution on the
generalized Jacobian J(Cp:00%) which we denote by St. If we use (59),
then in terms of the Jacobi polynomials U, V, W, it is given by

St (U,V,W)— (U,-V,W).

There is another natural anti-holomorphic involution on 7, given by the usual
complex conjugation L

(Q,‘,F,‘) = (Qi:ri) )
which we denote by S~ . In terms of the Jacobi polynomials (12) it is

ST (U, V,W) — (W, V., D).

PROPOSITION 4.1. The holomorphic involution St oS~ = S~ o ST on
J(Cy; 0o%) is a translation on the half-period %Az, where gb(—é—/\z) =0eJ(Cp)
(see (7), (9)).

The proof of the above Proposition will be given later in this section. If
¢ is the projection homomorphism defined in (7), then it implies

poStT=¢goS =50¢.

In other words the anti-holomorphic involutions ST and S~ “look alike” in
the same way on the usual Jacobian J(Cj) and differ in a half-period in the
“vertical” direction with respect to ¢ on the generalized Jacobian J(Cj,; 00¥).

An important feature of ST is that the S -real part of the invariant level
set T, is preserved by the flow of (2). Indeed, changing the variables as

Q — iQ, Q) — i, Qs — Qs
Iy —ily, I —ily, I's — 15,
we obtain a new system
Q= -mQQs — Ty, I =103 — I5Q,,
(60) Q) =mQ, +1, I =T50, —1Q;,
Q3 =0, [y =10 —T1Q;,
with first integrals
H =-T%-T5+T3, Hy = -} — QT + (1 4+ m)QsTy,
Hy=3(—Qf -+ 1 +mQ3) —T;, Hy=Qj.

The anti-holomorphic involution S in these coordinates is given again by
the complex conjugation.
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THEOREM 4.2. In each of the three connected subdomains of the comple-
ment to the discriminant locus of f()\) the topological type of the real part
of the algebraic varieties (J(Ch; ooi),Si) and (Ty,, S*) is one and the same
and is given in the following table, where T? = S' x S!.

roots of f(\) no real roots | two real roots | four real roots
real part of (J(Cp;00F),ST) T2 72 T* x (Z./2)
real part of (J(Cp;00F),S™) T? @ @

real part of (Tn,S™T) S' xR S' xR T>U(S' x R)
real part of (Tp,S™) T° 5} %)

REMARK. It is easy to check that when the real invariant level set Ty of
the Lagrange top is non-empty, then the polynomial f(A) has no real roots. If
we do not use the generalized Jacobian J(Cj;coT), then it might be difficult
to understand the relation between T,f (which has one connected component),
C,If (which is empty) and J(C,)® (which has two connected components) (cf.

(2], [3, p.-37)).

Proof of Proposition 4.1. We have ST oS~ : (U,V,W) — (W,-V,U).
The involution (U,V,W) — (U,—V, W) is obviously induced by the elliptic
involution i: (A, u) — (A, —p) on Cj so it is a reflexion. This means that if a
fixed point of i is taken for origin in J(Cj; coT) then i = —identity. It remains
to prove that j: (U,V, W) +— (W,V,U) is a reflexion too. The involution j
has the following simple geometrical interpretation. Let P, P, be two generic
points in the (), 1) plane and lying on the affine curve Cj, = {p? =f)}. If
{p = V(A)} is the straight line through P; and P, then it intersects C, in
four points P;, P,, P53, P4 and then j(Py + P;) = P3 + P,4. Indeed, if the zero
divisor of the Jacobi polynomial U()\) on Cj is P, + P, +i(Py) + i(P5), then
by (13) the zero divisor of W(\) is P3+ P4+ i(P3)+i(P4) and the involution
Py + P, — P3 + P4 amounts to exchanging the roots of U(\) and V()).

Let W;, i=1,...,4 be the Weierstrass points on Cj,. Then
4
p— V(>\)> =V
Py — Wi, — ~ 1
( WIS :

and hence on J(Cj;c0t) ~ Divo((fh)/ ~ we have P, + P, = —P3 — P, +
constant. This implies that j is a reflexion. Thus we have proved that ST oS~
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is a translation (S+ OS_)(z) = z+a. Finally, a is easily computed. We have
i(Wy) = Wi, j(W, + Wp) = W5 + W, and hence a ~ Wy + W, — W5 — Wj.
Further if \;, \; are zeros of f()\), then (g) = W) + Wy — W3 — Wy, where
g = (A = A\ — \) /. Moreover g(ooT) = £1, g*(co®) =1 and hence

m

WiAWo—Ws—Wy ~ 0, Wi+Wo—Ws—Wy £ 0, 2(W;+Wr—Ws—Wy) ~ 0.
This shows that a is a half-period and ¢(a) =0 € J(Cy). L[]

Proof of Theorem 4.2. The proof will consist of two steps. First we
determine the action of S* on Hl(é;1, Z) and hence on the period lattice A.
From that we deduce the first two lines of the table. Second, we determine the
action of S*: D, — Do on the infinity divisor Do = ¢~ 1(p) = C*/A; ~ C*
and then we use that

real part of (Th,Si) = real part of (](Ch;ooi),Si) — real part of D, .

It is easier to determine the action of ST on A. Indeed, ST is induced
by an anti-holomorphic involution on Cj,, S*: (X, u) — (A, —g ). Note that
ST always has fixed points on J(Cp;00F) : if Wy, W, are two Weierstrass
points on Cj, such that either W, = W,, or W, and W, are ST -real, then
ST(W, + Wy) = Wi + W,. On the other hand S~ has fixed points only
if f(\) has no real roots. Indeed, in this last case let W;, i = 1,....,4,
be the Weierstrass points of C, where W, = W,, Wi = W,. Then
JWi + W3) = W, + Wy (see the proof of Proposition 4.1) and hence
ST(W; + W3) = W, + W3. On the other hand if U = W and V = ¥V
then

»

VZO) + UMW) = [V + UM =f0) >0  YAER,

and hence f(\) has no real roots.

Suppose first that f(A) has no real roots and let us choose a basis Aj,
Bi, Ay of H|(C),Z) as shown in Figure 2 and in Figure 3 overleaf.

Then S*(A;) = Ay, ST(A;)) = Ay and it is easily seen that ST(B;) + B,
is homologous to A, on Hl((:’,1,Z). Thus in the basis A;,A,, B; the matrix
of the involution S*: H\(Cy, Z) — Hl(éh,Z) takes the form

1 0 O
0 1 1
0 0 —1
From this and the fact that (J (Cy; ooi), S“L) 1s not empty we conclude that the
real part of (J(Ch; oo™), S+) is a torus with generators the periods |/ 5 w and
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FIGURE 3

Projection of the cycles Ay, By,Ay, ST(B)) on the A—plane

J4, w. On the other hand the real part of (J(Cp; 00%),S7) is also non-empty
and SToS~ is a translation. We conclude that the real part of (J(Ch; co¥), S -‘)
is just a translation of the real part of (J(Ch; ooi),S+) and in particular it is
generated by the same periods.

In a similar way we find the real part of (] (Cp; 007), S+) in the remaining
cases. Note that in an appropriate Z basis of H{(Cj,Z) the matrix of the
involution S¥*: Hl(C’h,Z) — Hl(éh,Z) takes the same form if f(A) has two
real roots, and it 1s of the form

0 0 —I

if f(\) has four real roots. This implies the first two lines of the table.

Let us determine now the real part of (Do, ST). As Do, = C*/A, then
we have to compute S*(A,). Note that, as the real invariant manifold 7}, is
compact, then (Do, S7) is always empty. On the other hand (D, S™) is never
empty. Indeed, if ST(\, ) = (A, —75) then for Q € C;, the point Q + ST(Q)
is St-real on J(Cp;00%). As ST(cot) = 0o~ we see that an ST -real point
of ¢~!(p) is obtained by taking the limit Q +— oo™ in ST(Q) + Q along an
appropriate real analytic curve on C,. Finally, from the computation of the
action of ST on A we get ST(A;) = A, which shows that the ST -real part
of (¢~ (p),ST) is always a circle R/A,. This gives the last two lines in the
table. [
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