
Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 44 (1998)

Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: THE COMPLEX GEOMETRY OF THE LAGRANGE TOP

Autor: Gavrilov, Lubomir / ZHIVKOV, Angel

Kapitel: 4. Real structures

DOI: https://doi.org/10.5169/seals-63901

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 15.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-63901
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


156 L. GAVRILOV AND A. ZHIVKOV

4. Real structures

Recall that a real algebraic variety is a pair (X, S) where X is a complex
algebraic variety and S : X —> X is an anti-holomorphic involution on it. The

set of fixed points of S is the real part of (X,S). S acts on the group of
divisors Div(X) : if D G Div(X) is defined locally by analytic functions fa,
then S(D) is defined by the analytic functions faoS. Thus it is natural to
define an involution 5* on the sheaf of analytic functions Ox

sr:r(s{U),Ox)-+r(u,ox)
This also induces an involution on the groups of one-forms and one-cycles.

If (J G #°(X, n1), c G H\(X, Z), then fcS*u JS(c) uj. A form uj is 5-real

if and only if S*cj uj and one may always choose a basis of S-real forms.

In the case when X Ch is the spectral curve of the Lagrange top, the

action of S on Div(X) induces an involution on J(C/7; oo±). This, however,
does not suffice to determine the real structure of the invariant manifold
Th ~ J(Ch\oo±) \ 4>~l(p) (Theorem 2.2), as it will also depend on the point

p G J(Ch). Recall that the symmetric product S2Cu is bi-rational to Th. Thus
the generalized Jacobian and the invariant manifold Th are identified by the

Abel map

rP\+Pi
(59) Gl'. iS2Ch —* J{Ch\ oo1'") Pi ~j- P2 1—* / o uj — (lü\ UJ2).

JWi+Wj

This induces an involution on 7(Q; oo±), z —> S(z), where

rP\+Pi rS(P\+P2)

z= cj 3 S(z) uj
Jwx+w2 JW1+W2

Of course this depends on the fixed points Wi, W2 G /(C^;^1^). Let o;i,u;2
be 5-real Then

nS(Wl + W2) rS(Pi+P2) rS(W]JrW2) f-P\+P2

5(z) UJ+ üü= LÜ+ UJ 5(0) + 2.
Jw}+w2 Js(Wi+W2) JW]+W2 Jwl+w2

If 5 has a fixed point on /(C/goc^) (this does not depend on W\, W2) then

one may always choose it for origin, and hence S(z) z becomes a group
homomorphism.

Denote by S the anti-holomorphic involution on the spectral curve C/7

defined by 5(À,/x) (À, —JL). This involution comes from the real Lax pair
of Adler and van Moerbeke defined in Section 2. We shall also suppose that

the real polynomial /(A) has distinct roots. S induces an involution on the
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usual Jacobian J(Ch) which we also denote by S, and an involution on the

generalized Jacobian 7(C/?; oc^) which we denote by If we use (59),

then in terms of the Jacobi polynomials U,V,W, it is given by

5+: (t/,y, w) ^ (t7,-y, W).

There is another natural anti-holomorphic involution on Tj7 given by the usual

complex conjugation

("•.!';) • • (12:. I',),
which we denote by S~. In terms of the Jacobi polynomials (12) it is

: (u, y, w) ^ (w, y, U).

Proposition 4.1. The holomorphic involution S+ o S~ S~ o 5+ on

7(C/7; oo±) A a translation on the half-period where 0(^A2) 0 G J(C/7)

(see (7), (9)).

The proof of the above Proposition will be given later in this section. If
f is the projection homomorphism defined in (7), then it implies

f o f o S~ — S of.
In other words the anti-holomorphic involutions and S~ "look alike" in
the same way on the usual Jacobian 7(Q) and differ in a half-period in the

"vertical" direction with respect to f on the generalized Jacobian 7(C/7;ogF).
An important feature of is that the -real part of the invariant level

set Th is preserved by the flow of (2). Indeed, changing the variables as

iQi —» iTl\ ^ ÇI2 —f- /T22
5 Ö3 —*

F1 —> iT\, r2 -> ;r2, T3 —» t3,
we obtain a new system

ôi —171TI2TI2 — r2, r2n3 — r3Q2,
(60) 0,2 — mf^3^i tFi, r? r^Qi — r1^3,

n3 0, r3 r2n{ - ta,
with first integrals

H\ -r? - L + rj,h2 -
H3 5 ~ ^~̂2*l~ (1 + 171)03)— F3 H4 Q3

The anti-holomorphic involution S+ in these coordinates is given again by
the complex conjugation.
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THEOREM 4.2. In each of the three connected subdomains of the complement

to the discriminant locus of /(A) the topological type of the real part
of the algebraic varieties (/(Q; oo^), 5,±) and (Tj21S±) is one and the same
and is given in the following table, where T2 S1 x Sl.

roots of f(A) no real roots two real roots four real roots

raz/ par? of (j(Ch", oo±), S+) T2 T2 T2 x (Z/2)

real part of (J(Ch\oo±), S~) T2 0 0

real part of (TRS+) S] x R 5'xR T2 U (51 x R)

real part of (7RS-) T2 0 0

Remark. It is easy to check that when the real invariant level set Tf of
the Lagrange top is non-empty, then the polynomial /(A) has no real roots. If
we do not use the generalized Jacobian /(C/goo^1), then it might be difficult
to understand the relation between Tf (which has one connected component),
CR (which is empty) and i(C/?)R (which has two connected components) (cf.
[2], [3, p. 37]).

Proof of Proposition 4.1. We have S+a S~ : (£/, V, W) ^ (W, -V, U).
The involution (£/, V, W) i—» (£/, — V. W) is obviously induced by the elliptic
involution i: (A, p) (A, — p) on Ch so it is a reflexion. This means that if a

fixed point of i is taken for origin in J{Ch\ oc^) then i —identity. It remains

to prove that y : (C/, R, W) i—> (W, V, £/) is a reflexion too. The involution j
has the following simple geometrical interpretation. Let Pi, P2 be two generic

points in the (X, p) plane and lying on the affine curve C/? {p2 =f(A)}. If
R(A)} is the straight line through Pi and P2 then it intersects Ch in

four points Pi,P2,P3,P4 and then y(Pi + P2) P3 +P4. Indeed, if the zero
divisor of the Jacobi polynomial U(A) on Ch is Pi +P2 T- /(Pi) + /(P2), then

by (13) the zero divisor of W(A) is P3 +P4 + /(P3) + /(P4) and the involution

Pi +P2 ^ P3 +P4 amounts to exchanging the roots of U{A) and V(A).
Let Wi, i — 1,..., 4 be the Weierstrass points on Ch. Then

and hence on J(Chi 00^ ~ Div°(C/z)/ we have Pj + P2 —P3 — P4 +
constant. This implies that j is a reflexion. Thus we have proved that S+ oS-
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is a translation (S+ oS")fr) z + a. Finally, a is easily computed. We have

i(Wk) Wk, j(W{ + W2) W3 + W4 and hence a Wx + W2 - W3 - W4.

Further if Ai, À2 are zeros of /(A), then (g) « W\ + W2 — W3 — W4, where

g(A) (A - Ai)(A - A2)//i. Moreover gioo^ ±1, g2(oo±) 1 and hence

This shows that a is a half-period and 0(0) 0 G /(Q).

Proof of Theorem 4.2. The proof will consist of two steps. First we
determine the action of S± on HfCh, Z) and hence on the period lattice A.
From that we deduce the first two lines of the table. Second, we determine the

action of S± : D00 on the infinity divisor Doo C2 /A2 ^ C*

and then we use that

real part of (Th,S±) real part of (J(C/7; oc±), S,±) — real part of

It is easier to determine the action of S+ on A. Indeed, S+ is induced

by an anti-holomorphic involution on C/7, S+ : (A,/i) 1—> A, —/T Note that
S+ always has fixed points on /(C/7; oo^) : if Wi,W2 are two Weierstrass

points on C/7 such that either W\ — W2, or W\ and W2 are S+-real, then
S+(Wi + W2) — W\ + W2. On the other hand S~ has fixed points only
if /(A) has no real roots. Indeed, in this last case let Wif i 1,...,4,
be the Weierstrass points of Ch where W\ W2, W3 W4. Then
j(Wy + Wf) W2 + W4 (see the proof of Proposition 4.1) and hence

S-(Wi + W3) W\ + W3. On the other hand if U — W and V V,
then

V2(A) + U(X)W(\)I V(A)|2 + I [/(A) I2 =/(A) >0 VA e R,

and hence /(A) has no real roots.

Suppose first that /(A) has no real roots and let us choose a basis A\,
B\, A2 of Hi(Ch,Z) as shown in Figure 2 and in Figure 3 overleaf.

Then S+(Ai) A\ ,S+(A-,A2 and it is easily seen that ,S'+(ßi j + B\
is homologous to A2 on Hi(Ch,Z). Thus in the basis the matrix
of the involution S+:H{(Ch,Z)- Hx(Ch, Z) takes the form

From this and the fact that J{Ch;ocT ,S'+ j is not empty we conclude that the
real part of (j(Ch;oo±),S+) is a torus with generators the periods JB u and

m m
Wi+W2-W3-W4~ 0 Wi+W2-W}-W4 / 0, ~ 0.
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Figure 3

Projection of the cycles A\, B\, A2, on the A-plane

JA2 uj. On the other hand the real part of (J(Ch\oo1^), S is also non-empty
and S+oS~ is a translation. We conclude that the real part of (/(C/A oo^), S~)
is just a translation of the real part of (7(Caoo^1), S+) and in particular it is

generated by the same periods.

In a similar way we find the real part of (J(Q; cx)±), S+) in the remaining
cases. Note that in an appropriate Z basis of H\(Ch,Z) the matrix of the

involution S± : //i(C/j,Z) —>• //i(CA,Z) takes the same form if /(À) has two
real roots, and it is of the form

if /(A) has four real roots. This implies the first two lines of the table.

Let us determine now the real part of (DOQ,S±). As D00 C*/À2 then

we have to compute S±(A2). Note that, as the real invariant manifold Th is

compact, then (Z)oo, S~) is always empty. On the other hand (£>oo, S+) is never

empty. Indeed, if S+(A,/i) (A, —ß) then for Q ë Ch the point Q + S+(Q)
is 5+-real on J(C/A cx)±). As 5+(cx)+) oo~ we see that an 5+-real point
of (j)~x{p) is obtained by taking the limit Q ^ oo+ in S+(ß) + Q along an

appropriate real analytic curve on Ch- Finally, from the computation of the

action of S+ on A we get S+(A2) A2 which shows that the 5+-real part
of (0_1(p),5+) is always a circle R/A2. This gives the last two lines in the

table.
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