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To compute the limit we use (46), (47) and

. ;o d s ,
Jlim AP 011 (AP — 007)) = 6,,(0) — 0/ w1 = w 0;,(0)

s=

P—oo

: / d y /
hIIl+ A(P) 1, (,A(P — OO+)) = 911(0) E 0 / Wy = W(l) 811(0)

(see Lemma 3.5). [

3.3 EFFECTIVIZATION

Let p,(,0 be the Weierstrass functions related to the elliptic curve I’
defined by

(51) n* =4 — gl — g

(we use the standard notations of [4]).
Consider also the real elliptic curve C with affine equation

(52) WA XN+ a X+ o) +ah+as=0

and natural anti-holomorphic involution (A, u) — (X ﬁ), and put

a\* a a
(53)  pe=a+3(Z) -4
It is well known that the curves C and I" are isomorphic over C and that
under this isomorphism
dr d
(54) s o :
H 7
Following Weil [25] we call T" the Jacobian J(C) of the elliptic curve C and
we write J(C) = I'". Note that J(C) and T'" are real isomorphic and that J(C)
and C are not real isomorphic.
Further we make the substitution (23) and C becomes the spectral curve
Cy of Adler and van Moerbeke {p? +f(A\) =0}, where

FOU = M 421 + m)ha N’ + (283 + m(m + Dhg)A* — 2\ + 1

and T becomes the Lagrange curve I',. Recall that, as we explained at
the end of Section 2, the curve C, with an equation {u*> = f(\)} and
antiholomorphic involution (A, ) — O, —71), 1s 1somorphic over R to 5;1,
so we write Cj = Eh. The Jacobian curve J(C,) = I', was computed by
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Lagrange [17], while C;, appeared first in (1, 21] as a spectral curve of a Lax
pair associated to the Lagrange top.

Recall that o(z) is an entire function in z related to ((z), p(z) and the
already defined function 6;;(z | 1) on Cj as follows:

. O 4
(@) =—p@ , o(z) (@, dz
_ G [ZUOY g2
(55) O'(Z) — Ugil(o) eXp { 69;1(0) } e 24() T ’

where U is a constant depending on g, and g3. We shall also use the “addition

formula”
olu+v)olu —v)

o2(u) o%(v)

To state our result let us introduce the notations

= p(v) — ().

2x; =€ Q) + €L, 2xy = €Q + €€y, €2 =+v—1
(56) 291 =€ 4+€el, 2y =€l +€°Ty, P?=—1
p1 = —imQy, pr = —1Q3.
The system (2) is equivalent to
Xy = +pix; =y, yi=—pay1 +x1l3
(57) Xy = —p1x2 + Yy, Y2 = +pay2 — x2l3
P1, P2 = constants, I3 = 2x Y2 — 2x5y]

with first integrals Iy = 4x;xy — 205, I} = 4x1y, + 4x2y; — 2(p, + p2)I'3 and
L =T5 —4yy,.

THEOREM 3.6. The general solution of the Lagrange top (2) can be written
in the form

I okt D .,
M0 = = oD 0= = D
_ot=Rot =D 4 oo+t +D) -,
N0 = e ® oD € 20 = @ o €
oG+ Rolt—R o+ hot—1)
I3() = 20) 02(0) B0 —20(1) + p(1) + p(k)
p1=a— () — ((k) p2=—a— (k) —C(D)+2¢(k+ 1),

where ¢y, g3, a, b, k, | are arbitrary constants subject to the relation
3
92 — 279?% # 0.
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REMARK. The non-general solutions of the Lagrange top are obtained
from the above formulae by taking the limit g3 —27¢3 — 0. The formulae
for the position of the body in space, and in particular for T'3(¢), yi(¢), y2(?),
are due to Jacobi [15]. The expressions for x;(z), xx(¢) were first deduced by
Klein and Sommerfeld [16, p.436]. Note however that in [16] the constant a,
and hence the invariant level set on which the solution lives, is not arbitrary.

Proof. To make the solutions of the Lagrange top effective we use
the following 4-dimensional Lie group of transformations preserving the
system (57):

t
x1 — Uxje“t?, Xy — Uxpe 470, [ — 7 +T
(58) y1 — Uy e, y2 = Ulyre ", I3 — UTh
p1 — Upr + a, p2— Upy—a

where U # 0, T, a, b are constants.

The group (58) transforms x; from (48) (see also (56), (55)), where
21=tU—-TU, z1 — 1 = ({t — k— DU as follows

011(z1 — m2) _ ot — k=1 pat+b

011(z1) ook +1)

x1(t) = const

(we used the fact that
011(z1 — 12) 0 (2)
Ori(z)o(t—k—1)

is a constant). The variable x; is computed in the same way.

If we define the constant k by the condition y;(# — k) = 0, then the first
equation of (57) gives

n® X0 ot —=k) ()
e T n@ coet—k—1

where h(¢) is a meromorphic function on C, such that y;(¢)/x;(¢) is single
valued with poles at +t = 0 and ¢ = k + [, and residues (—1) and (+1)
respectively. These three conditions define A(¢) uniquely :

ot —Dolk+1)

W)= — e

which implies the formula for y;(#). The expression for y,(#) is obtained in
the same way.
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To deduce an expression for I';(z) we use the fact that
T3(f) = 2x13p — 3o = —20(t) + 2p(k + ) — 1o .

The value of Iy is easily computed by using the third equation of (57) and
the formulae deduced for xy,y;. By substituting r = k we obtain
ok—Dolk+1D

B0 = = o2 = ¥O — #®

and in a similar way I'3(l) = (k) — p(l). We conclude that

[3(8) = =2p(0) + p() + p(k) .

Finally, to compute p;, p, we shall use once again (57). As y;(k) =0 we
have
_xitk)y 4
Coxk)  dt

Inx; (1)

P1
t=k

d
— ——1 — S
o no(t—k—1)

=a— () —Ck).

In a quite similar way we obtain

d
— —1
= no(t) - +a

t=k

d
pr= -2l = —a=C0) ~ (O +20k+D.

Theorem 3.6 is proVed. []

REMARK. If we impose the condition
M+ +T5 =T -4y =1,

then

<0(Z—|— kyo(lt—k) o(t+Do(t— l))2 B o(t—k)o(t — Do+ k)o(t+1)
o2(k) o(t) a2(l) o(¢) a2t ok)o(l) o2(t) o(k) o(])

(oGt +kot—k oct+Do@—1) 2 ,
N ( a2k o2t o2 o) > = (pto) = p())” =1

and hence @(k) — () = +1.
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