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lim \(P)6U GMP - œ+)) - eu{0) -p-*oo+ v J ds

To compute the limit we use (46), (47) and

lim \(P)dn{A(P-œ-)) ~0'n(0)4-f
P-^oo- V 7 ds s=0 7

aj .s-u J

(see Lemma 3.5).

3.3 Effectivization

Let p. C, cr be the Weierstrass functions related to the elliptic curve T
defined by

(51) T]2 4£3 - g2t; -
(we use the standard notations of [4]).

Consider also the real elliptic curve C with affine equation

(52) fj? T A4 T a\X^ T a^X^ 4- a$À T a4 — 0

and natural anti-holomorphic involution (A. fi) —» (A, /l), and put

(53) <72 <24 + 3 (^) ^1 ^3

4~T: 73 det

1 ai Û2

4 6
Ö] «2 û3
4 6 4

a2
6

«3
4 ^4

It is well known that the curves C and T are isomorphic over C and that

under this isomorphism

dX dt;

M V
(54)

Following Weil [25] we call T the Jacobian 7(C) of the elliptic curve C and

we write 7(C) T. Note that 7(C) and T are real isomorphic and that 7(C)
and C are not real isomorphic.

Further we make the substitution (23) and C becomes the spectral curve
Ch of Adler and van Moerbeke {/12 +/(A) 0}, where

/(A) A4 T 2(1 T jfi)h^X^ T (2/13 4- yyi{YYI 4" 1)^4) A2 — 2/12A 4~ 1

and T becomes the Lagrange curve T/2. Recall that, as we explained at

the end of Section 2, the curve Ch with an equation {/12 /(A)} and

antiholomorphic involution (A, ß) —>• (A, —/Z), is isomorphic over R to C/2,

so we write Ch Ch- The Jacobian curve 7(C/2) was computed by
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Lagrange [17], while Qt appeared first in [1, 21] as a spectral curve of a Lax

pair associated to the Lagrange top.
Recall that a{z) is an entire function in z related to Ç(z), p(z) and the

already defined function 6\\{z | t\) on Q as follows:

C (z) ~p(z) —r C(z) Tcr(z) az

OnizU) \z2U2e'{[m\
<55) "fe)=wwwexpi^«rr^Mo+
where U is a constant depending on g2 and g2. We shall also use the "addition
formula"

a(u + v) a(u - v)
p(v) - p(u).

az(u) o~(v)
To state our result let us introduce the notations

2x\ ~ cQi T c £12 2x2 c £2 j T 6 kl2 — \J— 1

(56) 2yi eXi +eT2, 2y2eTj + e3T2 r =-1
Pi —imkl3 p2 —/^3.

The system (2) is equivalent to

+P1X1 — yi y 1 —P2);i +^r3
(57) i:? — PiA'2 + y2 yi +P2);2 — Y2r3

pi p2 constants T3 2x\y2 - 2x2y{

with first integrals 70 4xiy2 - 2r3, Ix 4x{y2 + 4jc2Vi - 2(pL + p2)r3 and

h T\- 4yiy2.
Theorem 3.6. Thegeneral solution of the Lagrange top (2) can be written

in the form

*1 (0 - - xfxfxe"'+b - - e-a,-b
a if) cr(k + /) cr if) cr(k + /)

v <j_y-k)oy-yeaJ+b a(t + k) a{t + 0
a2(t) o(k) a(l)

3-(

r M - a(t+ ®a<d- cr(t+ I) o(t - 03(0 " aHk)aHt)
+ Ywr pW + p(0 +

Pi a—CCO - <(*) p2 -a- C(0 + 2C()fc +
where g2, g2, a, b,k,I are arbitrary constants subject to the relation
gl - 21g2 f0.
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Remark. The non-general solutions of the Lagrange top are obtained
from the above formulae by taking the limit g\ — 21 —> 0. The formulae
for the position of the body in space, and in particular for r3(f), yft), y2it),
are due to Jacobi [15]. The expressions for xft), x2(0 were first deduced by
Klein and Sommerfeld [16, p. 436]. Note however that in [16] the constant a,
and hence the invariant level set on which the solution lives, is not arbitrary.

Proof. To make the solutions of the Lagrange top effective we use
the following 4-dimensional Lie group of transformations preserving the

system (57):

X\-+ Uxxeat+b,x2 -* Ux2e~at-b, ^ +
(58) r/2 at+b TyL, sy—at—b y tj2 yy\ U y\e J2 L y2 } 13 — (7 13

Pi —> Upl + a, p2 > Up2 - a

where U / 0, T, a, b are constants.

The group (58) transforms x\ from (48) (see also (56), (55)), where

Z\ tU — TU, z\ — T2 (t — k — l)U as follows

x. (t) const
^"(Z1~T2) - eat+b

0\\(z\) cr(t) cr(k + /)

(we used the fact that 0\\{Z\-
is a constant). The variable A2 is computed in the same way.

If we define the constant k by the condition yft — k) 0, then the first

equation of (57) gives

yft) x\{t) a(t — k)h(t)
P 1 ~

xi(t) xi(t) a(t) ait — k — /)

where hit) is a meromorphic function on C, such that y\{t)/x\it) is single
valued with poles at t *= 0 and t k + /, and residues (—1) and (+1)
respectively. These three conditions define hit) uniquely:

_ ait - /) aik + /)
()~a(k'which implies the formula for yft). The expression for y2(0 is obtained in

the same way.
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To deduce an expression for T^(t) we use the fact that

r3(f) 2xix2 - \h -2 P+ 2 + o - 5A) •

The value of Iq is easily computed by using the third equation of (57) and

the formulae deduced for x\, y\. By substituting t k we obtain

r n\_ a(k - I) a(k +I)_^ ^3( }
a2(k)a2(l)~p() P( }

and in a similar way r3(/) p(&) - p(/). We conclude that

1*3(0 — ~~2p(0 + p(/) + p(&)

Finally, to compute pi,p2 we shall use once again (57). As yi(&) 0 we
have

x\ (k) d
Pi 777 — lnvi(0

xi (/c) r=*

— In a(t — k — I)
dt

a-ai)~ak).
In a quite similar way we obtain

d
~ 1+ln

t=k dt t=k
+ a

P2 -j'nyiol
t—k+l

-ö-CW-C(0 + 2C(^ + /).

Theorem 3.6 is proved.

Remark. If we impose the condition

ri + r2 + r3 r3 ~ 1
;

then

a(t + k)a(t-k)
t

a(t + l)a(t-l)\2
a2(k)a2(t) a2{l)a2{t) Ja2(t)a(k) a(l) <r(£)<t(/)

_
<?(t + k) a{t — k) a(t + a(t x 2

cx2(/c> <j2(r)

and hence p(k)-±1.

a2 (J) (pW- p(0) 1
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