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and hence ¥ = V. Finally, the reader may check that the functions (46)
and (47) have the analyticity properties from Proposition 3.2 and hence they
coincide with the Baker-Akhiezer function defined in Proposition 3.1. L]

3.2 SOLUTIONS OF THE LAGRANGE TOP
Let z = (z1,22) € J(Cp; 00%). Tt is easy to check that the functions

011(z1 £ 72) JFo
011(z1)

live on J(Cj; co™). We shall see that they give solutions of the Lagrange top.
By (16) we compute that c%z = constant, where
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THEOREM 3.4. The following equations hold
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(48) €Q (1) + € L2,(t) = consts ,
011(z1)
)
(49) eSL(ﬂ—%EgkﬂD::conn4—i!£Li:Qze+@,
011(z1)
where
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Let us denote

w =+ +onh)d(Ah), P=(\p) — 0o™,
wy = (WA + 0 +0H) d(ATY),  P=(\p) — 0.

To prove Theorem 3.4 we shall need the following

LEMMA 3.5. The above defined differentials are such that
w?:—i/Q:—iVl, wg:i(c+—c_),
B

Vo = —ct 4+ ¢ +iQs, A(oo+—oo—):/w2.
B

Proof. The identity w9 = —i [ g 2 1s a reciprocity law between the
differential of the first kind w; and the differential of the second kind €
[13]. It is obtained by integrating w(P)w;, where m(P) = flfo Q, along the
border of Cj, cut along its homology basis A;, B;. On the other hand
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wy = 27 - - —
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Similarly the identity w) = i(ct — ¢~) is a reciprocity law between the

differential of the third kind w, and the differential of the second kind Q,
and A(cc™ — 007) = f& wy 18 a reciprocity law between the differential
of the third kind w, and the differential of the first kind w;. Finally, as

and hence

, AdA N N AdA
wy = [—‘g‘f\— o — AR we have w) = —F - — (1 +m)Q; = =iV — Q;
Ta T s |

and hence Vo, = —c™ + ¢~ +iQ5. [

Proof of Theorem 3.4. According to (42), (43)
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To compute the limit we use (46), (47) and

. ;o d s ,
Jlim AP 011 (AP — 007)) = 6,,(0) — 0/ w1 = w 0;,(0)

s=

P—oo

: / d y /
hIIl+ A(P) 1, (,A(P — OO+)) = 911(0) E 0 / Wy = W(l) 811(0)

(see Lemma 3.5). [

3.3 EFFECTIVIZATION

Let p,(,0 be the Weierstrass functions related to the elliptic curve I’
defined by

(51) n* =4 — gl — g

(we use the standard notations of [4]).
Consider also the real elliptic curve C with affine equation

(52) WA XN+ a X+ o) +ah+as=0

and natural anti-holomorphic involution (A, u) — (X ﬁ), and put

a\* a a
(53)  pe=a+3(Z) -4
It is well known that the curves C and I" are isomorphic over C and that
under this isomorphism
dr d
(54) s o :
H 7
Following Weil [25] we call T" the Jacobian J(C) of the elliptic curve C and
we write J(C) = I'". Note that J(C) and T'" are real isomorphic and that J(C)
and C are not real isomorphic.
Further we make the substitution (23) and C becomes the spectral curve
Cy of Adler and van Moerbeke {p? +f(A\) =0}, where

FOU = M 421 + m)ha N’ + (283 + m(m + Dhg)A* — 2\ + 1

and T becomes the Lagrange curve I',. Recall that, as we explained at
the end of Section 2, the curve C, with an equation {u*> = f(\)} and
antiholomorphic involution (A, ) — O, —71), 1s 1somorphic over R to 5;1,
so we write Cj = Eh. The Jacobian curve J(C,) = I', was computed by
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