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and hence TL Finally, the reader may check that the functions (46)
and (47) have the analyticity properties from Proposition 3.2 and hence they
coincide with the Baker-Akhiezer function defined in Proposition 3.1.

3.2 Solutions of the Lagrange top

Let z (z\,zi) £ /(C/aoct^). It is easy to check that the functions

6>n(zi ±t2) TZ2

On(zi)

live on J(C/,; oo^).Weshall see that they give solutions of the Lagrange top.

By (16) we compute that £z constant, where
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THEOREM 3.4. The following equations hold

?ll(zt
(48) ei2i(t) + e£22(t) constß
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(49) e Qi (0 + ?^2(0 const4 e+Z2
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where
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Let us denote

Wi -- ±(w? + 0(A"I))rf(A-1), ,p) -> oo*,

w2 ±(w2A + w? + 0(A-1)) rf(A_1), P (A, /i) oo±

To prove Theorem 3.4 we shall need the following

LEMMA 3.5. The above defined differentials are such that

-i f Q -iVi ujI c= i(c+ - c~)•T

V% — —T c T iTl3. Xl(0O+ —00)= UJ2 •

JBi

Proof. The identity cjJ -z fß Q is a reciprocity law between the

differential of the first kind w\ and the differential of the second kind Q

[13]. It is obtained by integrating iï{P)u\ where ir(P) fp0&> along the

border of C/? cut along its homology basis A\, B\. On the other hand

„ / fdXcoi Irci / — ] —

and hence

/a, P J P

",v"
Similarly the identity - i(c+ — c~) is a reciprocity law between the

differential of the third kind oj2 and the differential of the second kind O,
and XI(og+ — oo_) fßi u2 is a reciprocity law between the differential
of the third kind uj2 and the differential of the first kind uo\. Finally, as

I f MS
w2 -pit f ~prwehave u2 - (1 + 3 - Q.3

Al u Al ß

and hence V2 — c+ + c~ + z'03.

Proof of Theorem 3.4. According to (42), (43)

ën,(f) + en2(0 "2 Hm
P— oo- T^P)

and

eOi(r) -F EQ.2(t) +2 lim ——- ' ^
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lim \(P)6U GMP - œ+)) - eu{0) -p-*oo+ v J ds

To compute the limit we use (46), (47) and

lim \(P)dn{A(P-œ-)) ~0'n(0)4-f
P-^oo- V 7 ds s=0 7

aj .s-u J

(see Lemma 3.5).

3.3 Effectivization

Let p. C, cr be the Weierstrass functions related to the elliptic curve T
defined by

(51) T]2 4£3 - g2t; -
(we use the standard notations of [4]).

Consider also the real elliptic curve C with affine equation

(52) fj? T A4 T a\X^ T a^X^ 4- a$À T a4 — 0

and natural anti-holomorphic involution (A. fi) —» (A, /l), and put

(53) <72 <24 + 3 (^) ^1 ^3

4~T: 73 det
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6
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It is well known that the curves C and T are isomorphic over C and that

under this isomorphism

dX dt;

M V
(54)

Following Weil [25] we call T the Jacobian 7(C) of the elliptic curve C and

we write 7(C) T. Note that 7(C) and T are real isomorphic and that 7(C)
and C are not real isomorphic.

Further we make the substitution (23) and C becomes the spectral curve
Ch of Adler and van Moerbeke {/12 +/(A) 0}, where

/(A) A4 T 2(1 T jfi)h^X^ T (2/13 4- yyi{YYI 4" 1)^4) A2 — 2/12A 4~ 1

and T becomes the Lagrange curve T/2. Recall that, as we explained at

the end of Section 2, the curve Ch with an equation {/12 /(A)} and

antiholomorphic involution (A, ß) —>• (A, —/Z), is isomorphic over R to C/2,

so we write Ch Ch- The Jacobian curve 7(C/2) was computed by
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