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AN ASYMPTOTIC FREIHEITSSATZ
FOR FINITELY GENERATED GROUPS

by Pierre-Alain CHERIX *) and Gilles SCHAEFFER

ABSTRACT. Given two fixed integers kK > 2 and [ > 3, let T’ = (X |R) be
a presentation of the group. I' with k& = #X generators and [/ = #R relations. We
show that the following property of presentations of groups is generic in the sense
of Gromov: for any y € X, the subgroup of I' generated by X — {y} is free of
rank k — 1. This gives some generic estimates for the spectral radius of the adjacency
operator in the Cayley graph of I" relative to the generating system S = XUX ',

1. INTRODUCTION

The existence of free subgroups in some finitely generated group I gives
some information about the structure of I'. For example, it implies that T’
is non-amenable, and in particular that I" has exponential growth. There are
several results which ensure that various groups do have non-abelian free
subgroups. For example :

THEOREM (Tits’s alternative [15]). Let I' be a finitely generated linear

group. Then either U is almost solvable or T' contains a free subgroup on
two generators.

') Le premier auteur est supporté par une bourse “Jeune chercheur” du Fonds National Suisse
de la Recherche Scientifique et a effectué ce travail & Iuniversité de New South Wales.
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THEOREM (Magnus’s Freiheitssatz [12]). Let I = (X|r) be a one relator
group, xo € X be a generator of 1" that appears in the relation r and r be a
cyclically reduced word in the free group ¥y generated by X ; then X — {xo}
freely generates a free group in T .

Our purpose in this work is to measure in some sense how frequent it 1s
for a presentation I' = (X|R) to be such that a proper subset of X is free in
I". We prove the following result:

THEOREM 1.1. Let I' = (X|R) be a finite presentation with k generators,
[ relations and any fixed xo in X. Then the fact that X —{xy} freely generates
a free group in I’ is generic in the sense of Gromov.

The key idea is contained in proposition 4.1. Roughly speaking, if you
choose at random [ long relations and if the presentation satisfies a Dehn
algorithm, then every generator xp will appear in every sufficiently long
subword of every relation and hence it will appear in every product of
conjugates of relations. So X — {xp} generates a free group in T.

In [6], the first author has shown that “X generates a free semi-group” 1s
generic and that this implies bounds on the spectrum of the adjacency operator
associated to the oriented Cayley graph of I' relative to X. In section 5 below,
we consider the adjacency operator hg of the Cayley graph of I relative to
S=XUX"!, and we prove similarly estimates on the norm of Ag.

After finishing this paper we discovered that a result similar to Theorem 1.1
has been proved, using different methods, by G. Arzhantseva and A. Ol’shanskii
in [1]. They employed a slightly different definition of the genericity and they
proved that the small cancellation condition C’()\) is generic with respect to
this new definition.

We thank A. Valette for his useful remarks and for the proofreading of
this paper.




AN ASYMPTOTIC FREIHEITSSATZ 11
2. SOME DEFINITIONS
First, we recall what Gromov’s genericity 1s.

DEFINITION (Champetier). Consider two integers k > 2, [ > 1, aset X
of k generators and a property P of group presentations with X as generating
system and with [ relations. For integers ny,...,n > 1, let Pr(X,ni,...,n)
denote the finite set of presentations (X |ri,...,r;) where r; is a cyclically
reduced relation in the generators of X which is of length |r;| = n; (1 < i <1).

Then P is said to be generic in the sense of Gromov if the ratio

#{(X|R) € Pr(X,ny,...,m)| (X|R) satisfies P}

7

tends to 1 when min n; — +00.
i=1,...,l

For example, being a hyperbolic group is a generic property. This was
proved independently by Champetier [5] and Ol’shanskii [13].

One tool we need is small cancellation theory. Let (X|R) be a presentation
of a group I'. Denote by R* the set of cyclic conjugates of elements of R
and of their inverses.

DEFINITION 2.1. Let T" = (X|R) be a finitely presented group. A piece
is a prefix u common to at least two distincts elements in R* (by prefix,
we mean every non empty initial part of a word; in particular a word 1s a
particular prefix for itself).

Fix A €]0,1[. The presentation (X | R) satisfies the small cancellation
condition C'()) if the following inequality holds: |u| < A|r| for every r € R*
and for every prefix u of r which is a piece.

DEFINITION 2.2. A group I' = (X|R) satisfies a Dehn algorithm if, for
every non ftrivial reduced word w € Fy representing 1 in I, there exists a
prefix u of some word r € R* such that u is a subword of w and |u| > L|r|.

It is known that groups satisfying the small cancellation condition C'(1/6)
also admit a Dehn algorithm (see Theorem 4.4, Chapter V in [11] or
Theorem 25 in [14]). On the other hand Gromov proves that groups with
a Dehn algorithm are hyperbolic (see [8, Theorem 2.3.D]).

In Proposition 4.1 below, C'(1/6) is one of the conditions which imply
that, for some fixed xo € X, X — {xo} generates a free subgroup in T.
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~ Let (X|R) be a presentation with k generators and [ relations ri,..., 7.
G. Arzhantseva and A. Olshanskii proved, in [1], that for any fixed A > 0,

. #{(X|R) with C'()\) | S |rl =d, r cyclically reduced} '
im ~
d—+oo #{(X|R) | Zle ri| =d, r; cyclically reduced}

Unfortunately, even with this result, it is not known if the small cancellation
hypothesis is generic, so we need another hypothesis which is generic. Let us
recall the definition of Van Kampen diagrams.

DEFINITION 2.3. Let w € Fy represent the identity in I' = (X|R). Then
A is a Van Kampen diagram of w if A is a planar 2-complex for which the
]-skeleton is a graph, each edge of it being labelled by a element of X or
X~! such that when we read the labelling of every 2-cell of the complex, we
get a word in R*, and such that the labelling of the border of the complex
A 1s the word w.

For more details about Van Kampen diagrams, see [14], [3] or [11]. We
denote by I(A) (resp. E(A) and #(A)) the number of internal edges of A (resp.
the number of external edges of A and the total number of edges of A).

DEFINITION 2.4. The combinatorial area of a Van Kampen diagram A is
the number of its 2-cells. We say that A 1s a reduced diagram of w if it has
the minimal combinatorial area among all diagrams representing w.

For every w € Fy representing the identity in I' = (X|R), the existence
of such a reduced diagram of w is proved in [3].

DEFINITION 2.5. For 0 < 6 < 1, a finite presentation (X | R) is said
to satisfy the @0-condition, if for every reduced diagram A associated with
a reduced word w in Fx representing the identity in (X | R), we have
I(A) < 0#(A).

In [13], Ol'shanskii showed that for every fixed 6 > 0, the property of
satisfying a € -condition is generic.
To prove that result, he needed to introduce the following definition.

DEFINITION 2.6. A reduced diagram is simple if every edge 1s contained
in the boundary of a 2-cell of the diagram.
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It is clear that every reduced diagram of w is a disjoint union of simple
ones linked by bridges, where a bridge is a finite path of edges which are
not in the boundary of a 2-cell, and, because the word w in Fyx is reduced,
each bridge links two simple diagrams. In figure 1 the diagram contains three
simple diagrams (D1, D2, D3) and two bridges (B1, B2).

Dl

Bl

D3

FIGURE 1

A non simple diagram

Let X be a set of generators and y € X. For every reduced word r € Fy,

we denote by n,(r) the number of occurences of y and y~! in r. For example
n_‘.(yx3y—2xy3 ) =6.

DEFINITION 2.7. Let Fx be the free group on X with #X = k. For a
fixed € with 0 < e < 1/k and y € X, a non trivial reduced word r Fy is
(e, y)-balanced if

ny(r)

7]

> €.

A presentation I = (X |R) is (e,y)-balanced, if every r € R is (e,y)-
balanced.
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3. ABOUT GENERICITY

LEMMA 3.1. Let X = {x1,...,x,y}. For every 0 < e < 1/(k+ 1), the

ratio
#{r € Fx ||r| = n,r is (¢, y)-balanced}

#{r e Fx||r| = n}

tends to 1 when n tends oo.

Proof. First we want to rephrase the Lemma in terms of generating
functions. Let K be any fixed subset of Fyx and Fx(z,u) be the generating
function defined by

Fx(z,u) =Y "0,
rek
Fk(z,u) strongly depends on the choice of the generator y. However, as y
is fixed throughout the proof and to lighten the notation, we write Fx(z, u)
instead of F, x(z,u).
Defining ¢,; and p,(/) by

Cn,l
Fr,(z,u) = Z er|uny(r) — Z cn,zz”ul and pa(D) = fi_ :
reFy n,l m Cn,m

we have to prove that for every 0 < e < 1/(k+ 1),

Jim > paD=0.
0<i<en
We want to find an analytical form for Fg,(z,u).

It is clear that if K; and K, are disjoint subsets of Fx then Fg,uk,(z,u) =
Fi (z,u) + Fk,(z,u).

Let K;,K, be two subsets of Fy; assume that the map K; X K, — K1K;
defined by (w;,ws) — wiw, is one to one and satisfies |wjw,| = |wi| + |ws]
for w; € K; (where K1K, = {wiwz|w; € K;}); it is also clear that Fg, g, (z, u) =
Fk,(z,u)Fk,(z,u). This can be extended to a finite product of such K;’s.

First we compute the generating functions of some subsets K of Fy.

o Fra(z,u)=1.

e Denote by X' = X — {y}. As there are exactly 2k(2k — 1)"~! reduced
words of length n > 1 in Fx/, we obtain Fi ,_(.y(z,u) = % Set
[z, u) = Fig,, —{e1(z, 1)

e For (y) = {y'|i € Z — {0}}, we have F(z,u) = 2z hecause

. . I—uz
there are exactly 2 elements y= in (y) such that n,(y*) = [y*| = i. Set

h(z,u) = F)(z,u).
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Now we can partition Fy as follows:

Fy = {e} I [Fx — {e}] n];IO I,
where

I, = {wo YW Y Wal Y wy
]ijFX/, w; # e for j # 0 or n, and ij;éO}.
It is easy to check that Fj(z,u) = (f(z,u) + D? h(z, u) (W(z, w)f(z, W) 1. So

we obtain that

Frozu) = 1+ f@u) + Y (Fzu) + 1 hiz,u) (h(z, w) f(z, )"

n>1

h(z, u)(f(z,u) + 1))
1 — h(z, w)f (z,u)
B (14 2)(1 + uz)
1= Qk—Dz—uz(1 4+ 2k+1)z)°
Borrowing notation from [2], let g(z,u) = (1 +2)(1 + zu) and P(z,u) =
1 -QRk—Dz—uz(l1+QRk+1)2)=1—Q2k—1+u)z— 2k+ 1uz®. Then
g(z, u)
P(z, u)
and let r(s) be the root of smallest modulus of P(r(s),e’) = 0 in a small

neighborhood of s = 0. In particular 7(0) = According to [2, (3.1)],
we obtain from [2, Theorem 1] that

= (1 +f(zuw) (1 +

FFX(Zn Ll) =

2k+1

: 1 * 2
lim sup Z pu(k) — ——/ e”! /zdt‘ =0
TR <okt /2T J—oo
- "0 o . 700 00
with p = r((O))7 Ly = AL = n',_((O)) and 02 =no? =n(p? — rr(—é))).
Computing '(0) or easy combinatorial considerations gives u, = =
The actual value of o is here useless.
Now let € < kJ%l and 0 > 0. Let x such that \/T_wf e "2dt < 6.
Then there exists N such that for n > N, en < o/nx + m since € < ;o +1

Therefore, for n > N,

Yok < D> palk)

k<€n k<0',1X‘|",LL”
and there exists N; such that for n > Ny,

Y pay<25. O

k<en
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COROLLARY 3.2. For #X =k, #R=n, xp € X and 0 < ¢ < 1/k fixed,
being (€, xq)-balanced is generic for T = (X|R).

Proof of corollary. We choose n relations at random; by Lemma 3.1,
every r € R 1s generically (e, xg)-balanced, but the conjunction of finitely
many generic properties is also generic. [

4. SOME SUFFICIENT CONDITIONS FOR THE EXISTENCE OF FREE SUBGROUPS
We first begin by a very easy proposition.

PROPOSITION 4.1. Let I' = (X |R) be a finite presentation, which has
a Dehn algorithm and such that for some y € X every subword u of every
r € R* with |u| > |r|/2 contains either y or y~', then X — {y} generates a
free subgroup in T.

The proof of this proposition will follow from Lemma 4.2 below.

LEMMA 4.2. For (X|R) a finite presentation of a group T" and y € X,
the following are equivalent :

o X —{y} freely generates a free subgroup of T ;

o cvery non trivial element w € Fy, which represents the identity in T,

contains either y or y~!.

Proof. 1) =-2): By contraposition, suppose that there exists a non trivial
reduced element w € Fx_;,y such that @ = e (where w is the canonical
projection of w in I'), then X —{y} does not freely generate a free subgroup
in '

2) = 1):  Let wj,wy € Fy_g1 be two reduced elements such that

w; = wyp € I'. Then wlwz_l =e¢ecTI. So wlwz_l 1S an element of Fx_()
which represents the identity in I'. By hypothesis, this implies w; = w, in
Fyx. Hence X — {y} freely generates a free subgroup in T'. [

Proof of Proposition 4.1. By Lemma 4.2, it is sufficient to show that every
non trivial reduced word on Fy which represents the identity in I" contains
either y or y~!. By assumption, I' = (X |R) satisfies a Dehn algorithm, so
such a word contains at least one half of a relator » in R which contains at
least one occurrence of y or y~!. [
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The interest of this proposition appears when we replace “having a Dehn’s
algorithm” by “satisfying the small cancellation condition C’(1/6)”, because
C'(1/6) and the fact that every subword u of any relation r with |u| > |r|/2
contains at least one y or y~! are easy to check on a given presentation.

Unfortunately, as explained before, it is not known if the small cancellation
hypothesis 1s generic, so we need other sufficient conditions to ensure that
X —{y} generates a free subgroup in T.

PROPOSITION 4.3. Let I' = (X | R) be a finite presentation with k
generators and | relations, which is (€,xy)-balanced for some 0 < e < 1/k
and some xo € X, and which satisfies a 0-condition such that 0 < ¢/(2 — ¢€).
Then X — {xo} freely generates a free group in T.

To prove the proposition we need the following lemma and the following
notations. For a cell f; of the diagram, we denote by In#(f;) (resp. by Ext(f;))
the number of edges of f; which are internal to the diagram (resp. which are
on the border of the diagram). We denote also by #(f;) the total number of
edges of the cell f;.

LEMMA 4.4. Let I' = (X|R) be a finite presentation of a group T which
satisfies a 0-condition for some 0 < 0 < 1, then for every reduced diagram,
there exists a 2-cell f of A satisfying

20
Int(f) < m#(ﬂ-

Proof.  First we prove it for simple diagrams. Let e = 20/(1+6). Because
the diagram is simple we have the following equalities:

D Y Ex(f) = EQ) = |0A],

II) Z]nt(f,-) = 2I(A), because every internal edge belongs to two different

cells.

So we get:
#(A) = % Z[nt(ﬁ-) + ) Ext(f) = > #(f) - % > Ine(f) .

To obtain a contradiction, we suppose that every cell f; of one diagram A
is such that (1/e)Int(f;) > #(f;). Then we have
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1 |
- }: Int(fy) > Z #(F) = #(A) + . Z (),

whence % > Int(f)) > #(A) or 2—Z—EI(A) > #(A). Since € = 20/(1 + 0), we
obtain I(A) > 0#(A), which contradicts the 6-condition.

In fact, if the reduced diagram A is not simple, it is a union of simple
diagrams linked by bridges. So each of its parts, which is a simple diagram,
defines another reduced diagram (relative to another word), so the inequality
holds for every part of A which is a simple diagram. We conclude by saying
that increasing the number of external edges does not affect the inequality. []

Proof of 4.3. By Lemma 4.2, it is sufficient to prove that the (e,xg)-
balanced and f-conditions imply that every non trivial reduced word in Fyx
which vanishes in I' contains at least one xoil.

Let us choose such a word w and A a reduced diagram of w. By Lemma

4.4, there exists a cell f with border equal to one r € R*, such that

20 29
S =
i) < 75%*D = 7775

lrl < Ell"[ S nxO(r):

because § < ¢/(2 —€). As there are more occurences of xy or x; ' than the
number of internal edges, it means that some occurrences of xg or x, b will
be external edges, i.e. will be in the border of A which is w. []

We are now able to prove the main theorem.

Proof of theorem 1.1. By Proposition 4.3, for a finite presentation (X|R),
we know that being (€, xg)-balanced and satisfying a #-condition is sufficient
to ensure that X — {xp} freely generates a free subgroup in I'. But by
Corollary 3.2 and [13, Theorem 2], these two conditions are generic and so
is the conjunction of these two conditions.  []

5. SPECTRAL ESTIMATES FOR ADJACENCY OPERATORS ON CAYLEY GRAPHS

The existence of a free subgroup generated by X — {xy} gives an upper
bound for the spectral value of the adjacency operator on the Cayley graph of
[ = (X|R) associated with the symmetric generating system S = XUX !,

We briefly recall some definitions and notations. The Cayley graph G(I', X)
of I' associated with S has its set of vertices in bijection with I' and two
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vertices g; and ¢, are linked by an edge if and only g, 'g, € S. A graph is
completely determined by its adjacency operator and, in the case of Cayley
graphs, the adjacency operator hg can be expressed in terms of the right
regular representation p acting on [2(I') as

1
hs = 52 ) 0(s).

SES

The spectral properties of hg capture some information about the pair
(I',S = X UX™1). For example, Kesten proved

THEOREM (Kesten [10], [9]). Let T be a finitely generated group, let X
be a finite generating system and set S =X U X!,
a) The following are equivalent :
i) |lhslt =1,
ii) T' is amenable.
b) Assume that #X > 2, then Y280~ < ||ks||. Equality holds if and only if
I' is isomorphic to the free group Fx generated by X.

This enables us to give an easy proposition which was pointed out to us
by Pierre de la Harpe.

PROPOSITION 5.1. Let I = (X |R) be a finite presentation of a group T
with #X > 2. If XNX~' = @ and if there exists xg € X such that X — {xo}
generates a free subgroup in 1" then

V20 - T
#X

< |las|l <

V2EX) =3+ 1
#X ‘

Proof.  The first inequality is just Kesten’s. To prove the second one, set
X' =X—{x}, ¥ =X UX)~!. Then we can write

(#S)hs = p(xo) + pxo) ™" + Y pls).
seS’

As X' freely generates a free group, by Kesten’s result, we obtain that
HZ p(s)H = 20/2(8X) — 1 = 2/2(#X) — 3.
ses’

So

sl <2+ 3" po)|| =2+ 2200 =3,

ses’
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And as XNX~! =g, #5 = 2#X and we get

1+ 20X =3

]

The last proposition and Theorem 1.1 permit us to give generic upper
bounds for ||Ag||. Note that this upper bound is non trivial only for #X > 3.

COROLLARY 5.2. For a presentation I’ = (X |R) with #X = k > 3 and
#R = m fixed, the inequalities ———Vz(g)—l < hs|| < —————”2(%)}(‘3“ are generically
true.

Proof. Let x,y € X. Since k > 3, there exists xo € X distinct from x and
y. By Theorem 1.1, the subgroup generated by X — {xg} is generically free;
in particular xy # e in I'. This shows that, generically, X N X! = &. The
corollary follows then by combining Theorem 1.1 with Proposition 5.1. [

It was proved by Grigorchuk [7, Theorem 7.1] that for any fixed € > O,
any group satisfying the small cancellation hypothesis C’(1/6) and such that
the length of every relation is sufficiently large satisfies

V2(H#X) — 1 V2H#HX) — 1 1e

#X #X

<|lhsll <

This corresponds to the intuitive idea that when the relations are long and do
not cancel too much, the Cayley graph looks like a tree in some ball of large
radius.

Champetier (in [4]) generalised this theorem, by replacing the small
cancellation C’(1/6), by a weaker condition defined by :

DEFINITION (Champetier). A finite presentation (xi,...,xx|71,...,%m)
satisfies the A(C) condition for C > 0, if for every word w in Fy representing
the identity in (X|R), there exists a diagram A representing w such that, if
there are [; 2-cells contained in A having the relation r; as border, then

Zli]nl < Clw.
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With that definition, the precise statement of Champetier’s theorem is:

THEOREM (Champetier). Let C be a positive constant. For every € > 0,
there exists an integer no such that for every presentation I' = (X|R), with
#R = m, satisfying A(C) and ng < inf{|r||r € R}, the following inequalities
hold : ,

— —1
V20X — 1 < lhs]| < (1 . 5) VI T

#X 2 #X

Assume the presentation satisfies a @-condition: then I(A) < O#(A) =
O(I(A) + |w|), for any reduced diagram associated with w. As

m

Sthnl= > #(F) <2AW) +EQB),
i=1

2-cell fCA

it is easy to see that the f-condition implies A(lz_—ee + 1). So Champetier’s
theorem and the genericity of the ¢-condition imply:

COROLLARY 5.3. For every € > 0, every fixed #X = k and every fixed

_ V2EN—1
#R = m, s

\hs|| is generically close to

REFERENCES

[1] ARZHANTSEVA, G. and A. OL'SHANSKIL Generality of the class of groups in
which subgroups with a lesser number of generators are free (Russian).
Mat. Zametki 59 no.4 (1996), 489-496.

[2] BENDER, E. A. Central and local limit theorems applied to asymptotic enumer-
ation. J. Comb. Theory, Ser. A 15 (1973), 91-111.

[3] CHAMPETIER, C. Introduction a la petite simplification. Proceedings of the

congress ‘Cayley graphs’, Ecole Normale Supérieure de Lyon, France,
13-15 décembre 1993.

[4] —— Cocroissance des groupes a petite simplification. Bull. London Math. Soc.
25 (1993), 438—444.
[5] —— Propriétés statistiques des groupes de présentation finie. Adv. Maths. 116

(1995), 197-262.

[6]  CHERIX, P.-A. Generic result for the existence of free semi-group. In: Séminaire
de théorie spectrale et géométrie, no. 13, Université de Grenoble I, Institut
Fourier (1994-1995), 123-133. ‘

[7]  GRIGORCHUK, R. Symmetrical random walks on discrete groups. Multicompo-
nent random systems (1978), 285-325.

[8]  GrOMOV, M. Hyperbolic groups. In: Essays in Group Theory, S.M. Gersten
Ed. M.S.R.I. Publ. 8 (1987), 75-263.



22 P-A. CHERIX AND G. SCHAEFFER

[9]  KESTEN, H. Full Banach mean values on countable groups. Math. Scand. 7

(1959), 146-156.

[10] —— Symmetric random walks on groups. Trans. Amer. Math. Soc. 92 (1959),
336-354.

[11] LyNDON, R.E. and P. C. SCHUPP. Combinatorial Group Theory. Springer, 1977.

[12]  MAGNUS, W. Uber diskontinuierliche Gruppen mit einer definierenden Relation.
J. Reine Angew. Math. 163 (1930), 141-163.

[13]  OL'SHANSKII, A. Almost every group is hyperbolic. International J. of Algebra
and Computation 2 (1992), 1-17.

[14]  STREBEL, R. Small cancellation groups. Sur les groupes hyperboliques d’aprés
Mikhael Gromov, E. Ghys and P. de la Harpe Ed. Progr. Math. 83 (1990),
227-273 Birkhaiiser (Boston).

[15]  TiITS, J. Free subgroups in linear groups. Journal of Algebra 20 (1972), 250—
270.

(Recu le 17 octobre 1997)

Pierre-Alain Cherix

School of mathematics

University of New South Wales
Sydney, 2052

Australia

e-mail : pacherix @maths.unsw.edu.au

Gilles Schaeffer

LaBRI

Université Bordeaux I

351 Cours de la Libération

33405 Talence Cedex

France

e-mail : Gilles.Schaeffer@labri.u-bordeaux.fr




	AN ASYMPTOTIC FREIHEITSSATZ FOR FINITELY GENERATED GROUPS
	...
	1. Introduction
	2. Some definitions
	3. About genericity
	4. SOME SUFFICIENT CONDITIONS FOR THE EXISTENCE OF FREE SUBGROUPS
	5. Spectral estimates for adjacency operators on Cayley graphs
	...


