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3. Explicit solutions

In this section we find explicit solutions for the Lagrange top (2). We

compute first the Baker-Akhiezer function of the 5[(2, C) (or rather su(2))
Lax pair (14). This implies explicit formulae for the solutions of the Lagrange

top in terms of exponentials and theta functions related to the spectral curve C/7

(see for example Dubrovin [8], E. D. Belokolos, A. I. Bobenko, V. Z. Enol'skiï,
A. R. Its, V. B. Matveev [5]).Then we note that the Jacobian /(C/7) of C/7 is

just the Lagrange elliptic curve used in the classical theory which provides

explicit solutions in terms of exponentials and sigma function related to 7(C/7).

By performing a unitary operation on the matrix (15) we may put its

leading term in diagonal form. Substituting a —mQ3 in (14) and using the

change of variables (25) we obtain the following Lax pair representation for
the Lagrange top (2)

(29) [A,5-2*4] =2i^+ [A,B] 0, -1L atJ at
where

A_AaA)_4n(f,A) A12(f,A)Wl OA 2

A-A('.A)-^2i(f)A) A22(r,A)J " f 0 +

(IT771)0,3 ef^i(zL)TeQ2(0\jv _f r3 fri(0Tcr2(0A
Veßi(0 + ë£h(t) -(m+l)Q3 J ~{erl(t)+ëF2(t) -T3 J

and

BBit, A)
1°)+( eÖ!(0 + eQ2(0A

V° -1/ VeßiW+«ß2(0 -ß3 y
The spectral curve of the above Lax representation is defined by

C,7 {det(A(A) - fil)/j2 -/(A) 0}

/(A) A4 + 2(1 + m) h4X3+ (2A3 + + 1) hf) A2 - 2h2X + 1.

We shall also denote by Ch the Riemann surface of the compactified âffine
curve Ch. The reader may note the "similarity" between (29) and the Lax
pair of the nonlinear Schrödinger equation (for a rigorous statement see
Proposition 5.1).

3.1 The Baker-Akhiezer function
Let us fix a solution A(r, A) of (29) defined in a neighbourhood of

t 0 C. We shall also suppose that the point P (A,ß) is such that
(1,-1) is not an eigenvector of the matrix A(0, A).
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PROPOSITION 3.1. For any I G C in a sufficiently small neighbourhood
of the origin, there exists a unique eigenfunction

(30) T 4^P)=(^|^,
of A(t, A) (called the Baker-Akhiezer function) satisfying the conditions

(31)
dt

(32) A(t,\mt,P) ^(tffi)
and normalized by

(33) ^'(0, P)+ *P2(0, P)=\.
In terms of the coefficients Äfft, X) of the matrix A (Ay) we have

(34) 4>'(0 P)
Al2(0'A) E Ä22(0'A)

^12(0, X) + 11 — An(0, A) A2i(0, A) T- /i — A22(0, A)

(35) 4>2(0, P)
M~Au(°'A) Azi(0'A)

Ai2(0, A) + ß — An(0, A) A21 (0. A) + ß — A22(0, A)

Proof Let 0(/\ A) be a fundamental matrix for the operator B{t, A) — 2i~
normalized at t 0. Then the general solution of (31) is written as

(36) 4'(r, P)0(r, AmO, F), 0(0, A) (J ^ (A, p)

As A and B — 2ijt commute, we have

(ß(t, A) - 2/A) A(t, A)0(t, A) A(r, A) A) - 2i-|) Ou. A) 0

and hence A(t, A)<D(t, A) 0(t, X)M(P) for some constant matrix M(P)
computed by substituting t 0. Thus M(P) A(0, A) and

A(0, A) O"1 it,AA) 0(t, A).

The constants ^(O, P), yV2(0, P) are uniquely defined by (32) and (33). Finally,

A(t,Ay¥(t, P) 0(t, A) A(0, A) O"1^, A) O(/, A) ¥(0, P)

<SXt,X)-n-V(0,P)

^(t,p).
The formulae (34), (35) follow from (32), (33).

Denote by oo+ (respectively oo~ the point on C/, — ("/. such that in its

neighbourhood /u/A2 ~ +1 (resp. (—1)).
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PROPOSITION 3.2. There exists to > 0 such that for any fixed t £ C,

|f| < to, the Baker-Akhiezer vector-junction ^(t.P) is meromorphic in P on
the affine curve Ch and has two poles at P1.P2 C/7 which do not depend

on t. In a neighbourhood of the two infinite points oc± on Ch we have

(l ~b 0(X
1

exp — (A + Q3)?). P —» oc~*~

(37) ^(r,P)

(38) x¥2(t,P)

2

0(A_1)exp(+^(A + Q3)r). P oc~

0(A_1)exp(—^(A + Q3)r). P —> oc+

(l + 0(A)-1) exp(-h^(A + n3)r). P -> oc~

where i= Moreover, x¥l(t.P) (T2((P)) has exactly one zero on Ch

and the refined asymptotic estimates of XP1 at oc~ and of XP2 at oc+ read

£ ^1 (0")"£ ^2(0
(39) T1(r,P)

2A

(40) vP2(f.P)= (f-—(9(^-2) exp(-2(A+T>3)r), P^oc+.

Proof. According to (32), (VP1.VP2) e Ker(A - and hence

^"(0 P)
_ P— A2 — (1 + m)£23A + r3(r)
vHt-.P)~(ê Qi(t)+ e n2(o) a - ë ri + 6 r2(r)

'

If P -+ oc+ then ß -A2 - (1 + m)Q3A ~ 0(1) and using (29), (31), (32)
and (41) we compute

2'A A + £23 + (ëQi(r) + eQ2(0) vpi|f pj A + Q3 + 0(A_1)

and hence

^\t. P)(l + 0(A_1) exp(—j(A + Q3)r).
In a similar way if P—> oc~ we obtain

,2(t-P)=(l + 0(A-1)) exp(+j(A + Q3)f)

To compute the remaining asymptotic estimates we use that if -+ cc" then

(47) ^ VP)_An(t, A)
_ eQi(t) + eQ2(t)

>F2(r,/>) ß—Aiiit,A)~~ TÄ +0(A ")

and if P —> oc+ then

+ 0(A~2) exp(+j(A+f23)r). P^oc'
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A2l(t,X) _ eClM + ëChit)
(43)

2Ä +0(A }-

To find the poles of Tfiï, P) in P we note that according to the proof of
Proposition 3.1 (and with the same notations) we have

(44) ¥(*, P) O(r, Amo, P), 0(0, X) h -

If |l| is sufficiently small, the fundamental matrix 0(r, A) has no poles and

det 0(t, A) 7^ 0. It follows that the poles of <?(£, A) and 0(0, A) coincide, and

we can obtain them by solving the following quadratic equation

detA(0, A) (An(0,A)-Ai2(0,A))2 M2

(see (29, (34)). One gets two time independent poles Pi,P2 Ch of Tfiï, P)-

Finally, the meromorphic one-form Jin1?1 has a simple pole at oo~ with
residue +1 and is holomorphic in a neighbourhood of oo+. On the other
hand ^(f,P) has exactly two poles on Ch and hence it has one zero on Ch-

The same arguments hold for T*2^, P).

Let A\)A2-)B\ be a basis of H\(Ch- Z) as shown in Figure 2 (A\ oB\ 1),
and let uq, uoi be a basis of #°(C, 01(oo+ + oo-)), normalized by the

conditions
' 2iri 0

M

UJI
1

v.. V o 2
7 ixZ—1,2

We shall also suppose that toi is a holomorphic form on the elliptic curve
Ch. Define now the period matrix

n -
where

27ri 0 T\

0 27ri T2

n / Wi, r2 / UJ2, Re(n)<0.
JBi JB\

Recall that the generalized Jacobian /(C/Î;cx)±) of Ch relative to the modulus

m oo+-boo_ is identified with C2/A where A is the lattice in C2 generated

by the columns of II. Let

oo

On(z) 0n(zf ri) Y exy{\n(n+\f + (z +zG C

n= — oo

be the Jacobi theta function with characteristics [A, |],
6*11(0) 0, 6*ii (z + 27Tt) -6*ii(z), 6*n(z +ri) =-exp(—z - jT]) 0n(z)-
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Denote by Q the unique Abelian differential of second kind on Ch with

poles at oo±, principal parts where P (A,/i), i yf—T, and

normalized by fA^ Q 0. Let Po G C/7 be a fixed initial point, c U be the

constants defined by

(45)

1

\ p oo+-^A + C-AOCA-1), P

a u.

^ t.Pr j rv\~h p _^ ßl

2
+ -A + c+ + 0(A P —> oo

EC A-

/ ^1 •

g,

Define the Abel-Jacobi map

A: Div°(Cft) -> J(Ch) :IPP~Qi
Here, and henceforth, we make the convention that the paths of integration

between divisors are taken within C/7 cut along its homology basis A\, B\,
which we assume does not contain points of these divisors.

PROPOSITION 3.3. The Baker-Akhiezer function is explicitly given by

P n #11 (^4(P+00 —P\—P2)JrtU^j
u-c -2^3; - -

Po

(46) xF1(r,P) consti • exp[*(/ Q-c -jk23
L JPo

(47) x¥2(t,P) const2 • exp[t( f +

On (A(oo+ + oo" -Pi —P2) + tU)

On (Al(P+oo+ -Pi-Pi)+tU)
On (A(oo+ + oo~ -Pi-P2)+tU)

const2

>Po

where

6n{A{P~oo")) flu (.A(oo+
C°nStl " 011(Aoo+ -oo-))

' 9n(AP,))'

9n(A(P-œ+)) 9u(A(œ))0„(Aoo" -
9n(A(oo- - 00+))

'

0u(MP - Pi))
'

0n(A(P - P2))

and Pi, P2 arg the poles of XF.

The proof of the above proposition is based on a general fact : the properties
of enumerated in Proposition 3.2 define it uniquely. Indeed, if and T*

are vector functions both satisfying the assumptions of Proposition 3.2, then

the functions VF1 and T*1 (resp. T72 and XP2) meromorphic on C/7 have the

same poles. Using this and the asymptotic estimates at infinity we conclude
that T'1/^1 and 2/xP2 are meromorphic functions on C/7 which have one

pole (at T" 0). Moreover

Vi(t,oo-)/Vi(t,oo-)= 1, V2(t,oo-)/Vi(t,oo-)=l
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and hence TL Finally, the reader may check that the functions (46)
and (47) have the analyticity properties from Proposition 3.2 and hence they
coincide with the Baker-Akhiezer function defined in Proposition 3.1.

3.2 Solutions of the Lagrange top

Let z (z\,zi) £ /(C/aoct^). It is easy to check that the functions

6>n(zi ±t2) TZ2

On(zi)

live on J(C/,; oo^).Weshall see that they give solutions of the Lagrange top.

By (16) we compute that £z constant, where

* _ fvA_ o_.V L T v \

SO

dX r dX \ -i
— ?7T7 jAl P ^A2 P

\ X J A1 ß JÄ2 ß

f d\ „ f XdX
/ 0 / —27Tl

Ja2 ß Ja2 ß

^A,d^ (-Uv^ + aU

—az

dX)a •

A, M
1 "'JA, M

THEOREM 3.4. The following equations hold

?ll(zt
(48) ei2i(t) + e£22(t) constß

0n(zi)

(49) e Qi (0 + ?^2(0 const4 e+Z2
Ou(zi)

where

(50)

and

const3 -

const4

Z2 — tV2 7 Z\ — tV\ + .4(oO+ + OO — Pi — Pf)-)

T2 A(00+ — GO") UJ2
JB\

2iV,0n(O) On(4(.x ' - PO) t'nMix- - P2))

0n(4(oo" -00+)) On(4(oo"-P,))0„(4(oo--^2))'
2/ Li 0U(O) 011 (.A(oo- - Pi)) 011 (4(oo- - P2))

0,i (4(oo+ - 00-))
'

0,, (4(oo+ -Pi))
'

0,1 (4(oo+ - P2))
'
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Let us denote

Wi -- ±(w? + 0(A"I))rf(A-1), ,p) -> oo*,

w2 ±(w2A + w? + 0(A-1)) rf(A_1), P (A, /i) oo±

To prove Theorem 3.4 we shall need the following

LEMMA 3.5. The above defined differentials are such that

-i f Q -iVi ujI c= i(c+ - c~)•T

V% — —T c T iTl3. Xl(0O+ —00)= UJ2 •

JBi

Proof. The identity cjJ -z fß Q is a reciprocity law between the

differential of the first kind w\ and the differential of the second kind Q

[13]. It is obtained by integrating iï{P)u\ where ir(P) fp0&> along the

border of C/? cut along its homology basis A\, B\. On the other hand

„ / fdXcoi Irci / — ] —

and hence

/a, P J P

",v"
Similarly the identity - i(c+ — c~) is a reciprocity law between the

differential of the third kind oj2 and the differential of the second kind O,
and XI(og+ — oo_) fßi u2 is a reciprocity law between the differential
of the third kind uj2 and the differential of the first kind uo\. Finally, as

I f MS
w2 -pit f ~prwehave u2 - (1 + 3 - Q.3

Al u Al ß

and hence V2 — c+ + c~ + z'03.

Proof of Theorem 3.4. According to (42), (43)

ën,(f) + en2(0 "2 Hm
P— oo- T^P)

and

eOi(r) -F EQ.2(t) +2 lim ——- ' ^
P-> oo+ ^ft.P)
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lim \(P)6U GMP - œ+)) - eu{0) -p-*oo+ v J ds

To compute the limit we use (46), (47) and

lim \(P)dn{A(P-œ-)) ~0'n(0)4-f
P-^oo- V 7 ds s=0 7

aj .s-u J

(see Lemma 3.5).

3.3 Effectivization

Let p. C, cr be the Weierstrass functions related to the elliptic curve T
defined by

(51) T]2 4£3 - g2t; -
(we use the standard notations of [4]).

Consider also the real elliptic curve C with affine equation

(52) fj? T A4 T a\X^ T a^X^ 4- a$À T a4 — 0

and natural anti-holomorphic involution (A. fi) —» (A, /l), and put

(53) <72 <24 + 3 (^) ^1 ^3

4~T: 73 det

1 ai Û2

4 6
Ö] «2 û3
4 6 4

a2
6

«3
4 ^4

It is well known that the curves C and T are isomorphic over C and that

under this isomorphism

dX dt;

M V
(54)

Following Weil [25] we call T the Jacobian 7(C) of the elliptic curve C and

we write 7(C) T. Note that 7(C) and T are real isomorphic and that 7(C)
and C are not real isomorphic.

Further we make the substitution (23) and C becomes the spectral curve
Ch of Adler and van Moerbeke {/12 +/(A) 0}, where

/(A) A4 T 2(1 T jfi)h^X^ T (2/13 4- yyi{YYI 4" 1)^4) A2 — 2/12A 4~ 1

and T becomes the Lagrange curve T/2. Recall that, as we explained at

the end of Section 2, the curve Ch with an equation {/12 /(A)} and

antiholomorphic involution (A, ß) —>• (A, —/Z), is isomorphic over R to C/2,

so we write Ch Ch- The Jacobian curve 7(C/2) was computed by
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Lagrange [17], while Qt appeared first in [1, 21] as a spectral curve of a Lax

pair associated to the Lagrange top.
Recall that a{z) is an entire function in z related to Ç(z), p(z) and the

already defined function 6\\{z | t\) on Q as follows:

C (z) ~p(z) —r C(z) Tcr(z) az

OnizU) \z2U2e'{[m\
<55) "fe)=wwwexpi^«rr^Mo+
where U is a constant depending on g2 and g2. We shall also use the "addition
formula"

a(u + v) a(u - v)
p(v) - p(u).

az(u) o~(v)
To state our result let us introduce the notations

2x\ ~ cQi T c £12 2x2 c £2 j T 6 kl2 — \J— 1

(56) 2yi eXi +eT2, 2y2eTj + e3T2 r =-1
Pi —imkl3 p2 —/^3.

The system (2) is equivalent to

+P1X1 — yi y 1 —P2);i +^r3
(57) i:? — PiA'2 + y2 yi +P2);2 — Y2r3

pi p2 constants T3 2x\y2 - 2x2y{

with first integrals 70 4xiy2 - 2r3, Ix 4x{y2 + 4jc2Vi - 2(pL + p2)r3 and

h T\- 4yiy2.
Theorem 3.6. Thegeneral solution of the Lagrange top (2) can be written

in the form

*1 (0 - - xfxfxe"'+b - - e-a,-b
a if) cr(k + /) cr if) cr(k + /)

v <j_y-k)oy-yeaJ+b a(t + k) a{t + 0
a2(t) o(k) a(l)

3-(

r M - a(t+ ®a<d- cr(t+ I) o(t - 03(0 " aHk)aHt)
+ Ywr pW + p(0 +

Pi a—CCO - <(*) p2 -a- C(0 + 2C()fc +
where g2, g2, a, b,k,I are arbitrary constants subject to the relation
gl - 21g2 f0.
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Remark. The non-general solutions of the Lagrange top are obtained
from the above formulae by taking the limit g\ — 21 —> 0. The formulae
for the position of the body in space, and in particular for r3(f), yft), y2it),
are due to Jacobi [15]. The expressions for xft), x2(0 were first deduced by
Klein and Sommerfeld [16, p. 436]. Note however that in [16] the constant a,
and hence the invariant level set on which the solution lives, is not arbitrary.

Proof. To make the solutions of the Lagrange top effective we use
the following 4-dimensional Lie group of transformations preserving the

system (57):

X\-+ Uxxeat+b,x2 -* Ux2e~at-b, ^ +
(58) r/2 at+b TyL, sy—at—b y tj2 yy\ U y\e J2 L y2 } 13 — (7 13

Pi —> Upl + a, p2 > Up2 - a

where U / 0, T, a, b are constants.

The group (58) transforms x\ from (48) (see also (56), (55)), where

Z\ tU — TU, z\ — T2 (t — k — l)U as follows

x. (t) const
^"(Z1~T2) - eat+b

0\\(z\) cr(t) cr(k + /)

(we used the fact that 0\\{Z\-
is a constant). The variable A2 is computed in the same way.

If we define the constant k by the condition yft — k) 0, then the first

equation of (57) gives

yft) x\{t) a(t — k)h(t)
P 1 ~

xi(t) xi(t) a(t) ait — k — /)

where hit) is a meromorphic function on C, such that y\{t)/x\it) is single
valued with poles at t *= 0 and t k + /, and residues (—1) and (+1)
respectively. These three conditions define hit) uniquely:

_ ait - /) aik + /)
()~a(k'which implies the formula for yft). The expression for y2(0 is obtained in

the same way.
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To deduce an expression for T^(t) we use the fact that

r3(f) 2xix2 - \h -2 P+ 2 + o - 5A) •

The value of Iq is easily computed by using the third equation of (57) and

the formulae deduced for x\, y\. By substituting t k we obtain

r n\_ a(k - I) a(k +I)_^ ^3( }
a2(k)a2(l)~p() P( }

and in a similar way r3(/) p(&) - p(/). We conclude that

1*3(0 — ~~2p(0 + p(/) + p(&)

Finally, to compute pi,p2 we shall use once again (57). As yi(&) 0 we
have

x\ (k) d
Pi 777 — lnvi(0

xi (/c) r=*

— In a(t — k — I)
dt

a-ai)~ak).
In a quite similar way we obtain

d
~ 1+ln

t=k dt t=k
+ a

P2 -j'nyiol
t—k+l

-ö-CW-C(0 + 2C(^ + /).

Theorem 3.6 is proved.

Remark. If we impose the condition

ri + r2 + r3 r3 ~ 1
;

then

a(t + k)a(t-k)
t

a(t + l)a(t-l)\2
a2(k)a2(t) a2{l)a2{t) Ja2(t)a(k) a(l) <r(£)<t(/)

_
<?(t + k) a{t — k) a(t + a(t x 2

cx2(/c> <j2(r)

and hence p(k)-±1.

a2 (J) (pW- p(0) 1
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