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THE COMPLEX GEOMETRY OF THE LAGRANGE TOP

by Lubomir GAVRILOV and Angel ZHIVKOV ")

ABSTRACT. We prove that the heavy symmetric top (Lagrange, 1788) linearizes
on a two-dimensional non-compact algebraic group — the generalized Jacobian of an
elliptic curve with two points identified. This leads to a transparent description of its
complex and real invariant level sets. We deduce, by making use of a Baker-Akhiezer
function, simple explicit formulae for the general solution of the Lagrange top. Finally,
we describe the two real structures of the Lagrange top and their relation with the
focusing and the non-focusing non-linear Schrodinger equation.
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134 : L. GAVRILOV AND A. ZHIVKOV
1. INTRODUCTION

The motion under gravity of a rigid body one of whose points is fixed is
described by a Hamiltonian system on the cotangent bundle 7* SO(3) of its
configuration space SO(3), coordinatized by Euler angles and their conjugate
momenta. This system was first obtained by Lagrange around 1788 [17], the
particular case of free rigid body motion being already known to Euler. After
a first reduction, with respect to rotations about the vertical in space, this
leads to the following two degrees of freedom Hamiltonian system on T*S2,
also obtained by Lagrange [17, p.232 and p.243]:

dM dl’

1 == — =
(D = MxQ+yxT, % I'xQ

M= (M, My, M3), =(£,€,Q3), I'=~071,I2,13), x =1, x2,x3)-

Here M, Q and I' denote respectively the angular momentum, the angular
velocity and the coordinates of the unit vector in the direction of gravity, all
expressed in body-coordinates. The constant vector  is the center of mass
in body-coordinates multiplied by the mass of the body and the acceleration.
We recall that M = IQ2 where I is the matrix of the inertia operator and we
may suppose that [ = diag (I, >, I3). The system (1) may be viewed as a two
degrees of freedom Hamiltonian system on the manifold se*(3) ~ s¢(3) — the
Lie algebra of the Euclidean group of three space SE(3) = SO(3) x R®. Indeed,
5¢*(3) with its usual Kostant-Kirillov-Poisson structure may be identified, via
(a multiple of) the Killing form, with se(3). This induces the following Lie-
Poisson bracket on se¢(3) ~ R? x R?

(M, My} = —Ms,...., {MyTht=-T5,...., {I,;}=0
with coadjoint orbits
M= {M,T)€eR® : (['T)=1,(T,M) =a},

and on each symplectic leaf (1) is Hamiltonian with Hamiltonian function the
energy of the body (see [21])

E=3(Q,M)— (x,T).

Further we shall be interested in the case when the body is symmetric
about an axis through the center of gravity and the fixed point — the so-called
Lagrange top [17, p.253]. This is equivalent to the conditions I} = I, and
x = (0,0, x3). Without loss of generality we may also suppose that x;/I} =1,
and if we put m = (I3 — I)/I; then (1) takes the form
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Ql = —m QQQg — FZ Fl = F2§23 - r392
(2) Qz = mQ3Q1 -+ F1 rz = F3Ql — FlQ.3
Q;=0 Iy =1Q — Ty

with first integrals
H =T3+T135+T13
Hy, = QT + QI + (1 +m)€213
E=Hy=1(Q+Q}+(1+mQ3)—T3.

FIGURE 1
The Lagrange top

Due to the symmetry of the body there is an additional integral of motion,
Hy = Q3

which makes (2) Liouville integrable on the symplectic leaf

My={@QD R : TT+T3+T3 =1, QI+ Qs+ (1 +mQTs =a}.

The Hamiltonian vector field generated by Hy on M, is given by

Q =, I =TI
(3) Q= —Q I =T
Q; =0 ;=0

and it represents uniform rotations about the symmetry axis through the center

of gravity and the fixed point in space.
The Lagrange top is one of the most classical examples of integrable
systems and it appears in almost all papers on this subject. The explicit
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formulae for the position of the body in space (I';,I,I3 in our case)
were found by Jacobi [15, p.503-505]. In the last twenty years most of
the integrable problems of classical mechanics were revisited by making use
of algebro-geometric techniques. From this point of view the Lagrange top
takes a somewhat singular place — the results available are either incomplete,
or inexact, or even wrong. Consider the complexified group of rotations
C* ~ C/2miZ defined by the flow of the vector field (3). It acts freely
on the generic complex invariant level set

Th = {(Q’F)ECG : H1(97r):17H2(Q7r):h27H3(Q7F):h37H4(Q7r):h4}

and it is classically known that the quotient manifold 7, /C* is an elliptic curve.
The starting point of the present article is the observation that, generically,
the algebraic manifold T} is not isomorphic to a direct product of the curve
T,/C* and C* (although as a topological manifold it is). Let us explain first
the algebraic structure of the invariant level set 7. If A C C? is a rank three
lattice

4) A—_—Z<2”>@Z<O.>@Z(“), Re(r,) < 0
0 271 ™

then C?/A is a non-compact algebraic group and it can be considered as a
(non-trivial) extension of the elliptic curve C/{2miZ®7Z} by C* ~ C/27wiZ :

(5) 0 C/2mZ — C*/A L C/2miZ o nZ) —0, ¢,2) =2 .

We prove that, for generic h;, the complex invariant level set 7, of the
Lagrange top is biholomorphic to (an affine part of) C>/A. The algebraic
group C?/A turns out to be the generalized Jacobian of an elliptic curve with
two points identified. This curve, say C, is the spectral curve of a Lax pair for
the Lagrange top, found first by Adler and van Moerbeke [1] and its Jacobian
Jac(C) = C/{2miZ © yZ} is a curve found first by ... Lagrange. Further
we prove that the flows (2), (3) define translation invariant vector fields on
C?/A which means that our system is algebraically completely integrable.
Let us compare the above to the classical Lagrange linearization on an
elliptic curve [17] (see also [1, 21, 24, 3, 2]). It is well known that, due to
the symmetry of the body, the system (2) is invariant under rotations about
the axis of symmetry. These rotations are given by the flow of (3) which
commutes with the flow of the Lagrange top. Thus we have a well defined
C* action on the complex invariant level set T}, ~ C? /A and a well defined
(factored) flow on 7j,/C*. Lagrange noted around 1788 that this factorization
amounts to eliminating the variables €;,€Q;,I';,I2, so he obtained a single
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autonomous differential equation for the nutation ¢, where I3 = cosé [17,
p.254] (nutation is the inclination of the symmetry axis of the body to the
vertical). Finally it is seen from this equation that T'3(7) is, up to an addition
and a multiplication by a constant, the Weierstrass elliptic function (7). Thus
Lagrange linearized the complex flow of the Lagrange top on an elliptic curve.
This curve happens to be the Jacobian J(C) of the spectral curve C of Adler
and van Moerbeke and is identified with C/{2miZ & 71Z} in (5). The kernel
of the map ¢ is just the circle action C* ~ C/27iZ defined by (3), so
the linear vector field (3) is projected under ¢ onto the zero vector field on
Jac(C) = C/{27iZ ® 1L} .

To summarize in modern language, Lagrange’s computation shows that rhe
generic invariant level set Ty of the Lagrange top is an extension of an elliptic
curve C ~ Jac(C) by C* and the flow is projected on this curve into a well
defined linear flow. This is, however, a very vague description of Tj ~ C?/A.
Indeed, although the fibration

(6) C?/A % Jac(C) = C/{2miZ & T2}

is topologically trivial, it is not algebraically trivial, and to know its rype
we need the parameter 7, defined in (4) (cf. [23]). As the general solution
of (2) lives on C? /A then, contrary to what is often asserted, it cannot be
expressed in terms of elliptic functions and exponentials. It is even less true
that “the flow of the Lagrange top lives on a complex 2-dimensional cylinder
with generator the line z =07 as claimed in [21, p.232].

The algebraic description of the Lagrange top is carried out in Section 2
(Theorem 2.2). The Lax pair is used first in Section 3 where we construct
the corresponding Baker-Akhiezer function. This implies explicit formulae for
the general solution of the Lagrange top which complete and simplify the
classical formulae due to Jacobi [15, p. 503-505] for I';, 1,13 and Klein and
Sommerfeld [16, p.436] for the angular velocities (Theorem 3.6).

In Section 4 we study reality conditions on the (complex) solutions. Besides
the usual real structure of the Lagrange top given by complex conjugation
there is a second natural real structure induced by the eigenvalue map of the
corresponding Lax pair representation. It turns out that these two structures
coincide on Jac(C) but are different on C2/A (and hence on T},). The
corresponding real level sets are described in Theorem 4.2. This makes clear
the relation between the real structure of the curve C, its Jacobian Jac(C)
and the real level set T,}f (a question raised in [2] and [3, p.37]).

The results obtained in the present paper lead to the following unexpected
observation: the real solutions of the Lagrange top corresponding to its two
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real structures provide one-gap solutions of the nonlinear Schrodinger equation
(Proposition 5.1)

(NLS*) Uge = iUy £ 2|u|2u.

Finally, for the convenience of the reader, we give in the Appendix a brief
account of some more or less well known results concerning the linearization
of the Lagrange top on an elliptic curve.

ACKNOWLEDGMENTS. Part of this work was done while the second author
was visiting the University of Toulouse IIl in June 1994. He is grateful for
its hospitality. We also acknowledge the interest of M. Audin, Yu. Fedorov,
V. V. Kozlov and A. Reiman to the paper.

2. ALGEBRAIC STRUCTURE

Let C be the affine curve {z?> =f(\)} where f is a degree 4 polynomial
without double roots. We denote by C the completed and normalized curve C.
Thus C is a compact Riemann surface, such that C = CUoot U o0~ , Where
oot are two distinct “infinite” points on C. Consider the effective divisor
m = oot +o00~ on C and let J,,(C) be the generalized Jacobian of the elliptic
curve C relative to m. Following [23] we shall call m a modulus. We shall
denote also J(C;o0T) = J,(C). Recall that the usual Jacobian

J(C) =Div’(C) / ~

is the additive group Div’(C) of degree zero divisors on C modulo the
equivalence relation ~ . We have D; ~ D, if and only if there exists
a meromorphic function f on C such that (f) = D; — D,.. Similarly the
generalized Jacobian

J(C;00%) =Div(C) /X

is the additive group Div’(C) of degree zero divisors on C modulo the
equivalence relation ~. We have D; ~ D, if and only if there exists
a meromorphic function f on C such that f(cot) = f(co™) = 1 and
(f) = Dy — D,. The generalized Jacobian J(C;00F) is thus obtained as a
C* -extension of the usual Jacobian J(C) (isomorphic to C). This means that
there is an exact sequence of groups

exp

7) 0% ¢ X J(Ci o) 2 J(C) = 0.
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The map ¢ is induced by the inclusion C C C and v(r) € J(C;00%), r #0, is
the divisor of any meromorphic function f on C satisfying f(co™t)/f(co™) = r
[10, p.55].

As an analytic manifold J(C;oco0™) is

(8) C*/A ~ H(C,Q (0T +007))" /H{(C, Z)

where the lattice A is generated by the three vectors

ax dx i
(9) Al — ( A]/\lj;/\> s A2 - ( Az/\'lj{/\> ) A3 — ( BI,\A:[)\ )
By *2 Ju, 52 Jo, S0

and the cycles A;,A;, B; form a basis of the first homology group Hi(C,Z)
as in Figure 2. It is seen that the period lattice A may be obtained by pinching
a non-zero homology cycle of a genus two Riemann surface to a point oo™
(Figure 2). This is expressed by saying that J(C;oco™) is the Jacobian of the
elliptic curve C with two points oo™ and oo™ identified [10].

FIGURE 2

The canonical homology basis of the affine curve C

For further use, note also that

(10) ¢: J(Cy007) = J(C), ¢: C*/A — C/P(A)
is just the first projection ¢(z1,7z2) = z;. As
d\
»(N) = [ — =0,
A, M

¢(A) is generated by ¢(A;) and ¢(A3), and

KercﬁzC/{Z/A )\—Z)\}NC*.

As an analytic manifold the usual Jacobian J(C) is

C/p(A) ~ H(C,QY* /H\(C,Z).
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In contrast to the usual Jacobian J(C), the generalized Jacobian CZ/A
1S a non-compact algebraic group. For any p € J(C) define also the divisor
D, = ¢~ (p) C J(C; 00%).

An explicit embedding of a Zariski open subset of J(C; ocoT) in CS is
constructed by the following classical construction due to Jacobi (see Mumford
[18]). Let

(11) FO) =2+ ai X + e\ + az) + ay

be a polynomial without double roots and define the polynomials

(12) U\ = X4+ +uy, V) = v A +0,, W) = A2 4w A+ ws.
Let T¢c be the set of Jacobi polynomials (12) satisfying the relation

(13) FOO = V) = UMWY

More explicitly, let us expand

3
f—" V2 — UW: Zbi(u],uzj'U],’Uz,U)],’le))\i,
=0

2
by =ay —u; —wy, by = a, —uy — wy — uywy — vy,

bl = d3 — U1Wy — UWq —2”01’02, b() = d4g — UW» —’U%.
If we take u;,v;,wx as coordinates in C°® then T is just the zero locus
V(bo, b1, by, bs) as a subset of C®
Tc = {(u,v,w) e C® Ut wy =ay, Uy +wy + uyw +v]2 =a,

2
Uywy + upwy + 20100 = az,  uywy + U5 :a4}.

PROPOSITION 2.1.  If f(A) is a polynomial without double roots, then

(1) Tc is a smooth affine variety isomorphic to J(C; cot) \ D, for some
peJ(C);

(ii) any translation invariant vector field on the generalized Jacobian
J(C;00%) of the curve C can be written (up to multiplication by a non-
zero constant) in the following Lax pair form

d B A(a)
(14) 2v/~1 AN = [A(A), e a}

where

V(A U(A
(15) a0 = (e i )
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aeC, and U, V,W are the Jacobi polynomials (12).
Equivalently, if D = Py + Py € Din(C), where P; = (M, p), 1 = 1,2,
then (14) can be written as

d\ d\y
= —/—1dt
7o T roe s V!

(16)

MaM L dadds
Jiow Cviow '

REMARK. Note that @ = oo also makes sense. The corresponding vector
field is obtained by changing the time as 7 — t/a and letting a — oo. Thus
(14) becomes

y 0 -1
(17) 214N = [AN), Ass |, Aoo:<_1 o)

and (16) becomes

dA\; i d\ 0
(18) VI V(A
Ad A Ad My
= —v—1dt.
V(A1) - Vi (A2) il

The proof of part (i) of the above proposition can be found in Previato [20]
(see also Mumford [18]). It is also proved there that a translation invariant
vector field % on the generalized Jacobian J(C; ooT) which is induced by
the tangent vector

d

(19) E )\‘/\:a — /f(a)
on C via the Abel map C — J(C;00%), can be written as
(20) _CEU()\) _ V(@) UN) — U(a)V(N)

de A—a
21) 4oy = _V@W) = W@V

de A—a

d . U@WO) — WU
(22) 7 V() = Ty .

Our final remark is that the translation invariant vector fields (20), (21)
and (22), which we denote further by %, can be written in the following Lax
pair form (suggested by Beauville [6, Example 1.5]):
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d B A(a)
“22A0 = (40, =],
where
(VY U
=(wan o)

By (19) the direction of the constant tangent vector computed above is

< A ak ) (1.0
b — 7a Y
Vi) Vf(a)
which proves (16). This completes the proof of Proposition 2.1.  []
Next we apply Proposition 2.1 to the Lagrange top (2). Let C, be the
curve C as above, where

o) ar =2(1+mhs,  a=2hs+mm+ D,
as = —2hy, as=h =1,

SO
24)  Ch={p> =2 +20 + mX’ + (2h3 + m(m + Dh3)\> — 2\ + 1} .
Consider the complex invariant level set of the Lagrange top (2)
Th = {(QDeC’: H(QD)=1, Hy(Q,T)=hy, H3(Q,1)=h3, Hy(Q,T)=hs }
and the associated “bifurcation set”

B = {h € C*: discriminant (f(\)) =0} .

It is a straightforward computation to check that the linear change of variables

u; = (1 +m)Q3 — i€y uy, = —I'z+il»
(25) w; = (1 +m)Qs3 + i€ wy = —I3 —il'y
V1 = Ql Vy = ——F1

(with i = v/—1) identifies T¢ and 7). Further, as

e R O e R LY i |

A—a A—a —a—w;—A V1

the vector field (2) is obtained by substituting a = —m{ 23 in (14) and using
the change of variables (25) (note that €23 is a constant of motion). Similarly
the vector field (3) is obtained by substituting a = oo (see the remark after -
Proposition 2.1).
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To sum up, we have proved the following

THEOREM 2.2. If h ¢ B, then

() the complex invariant level set Ty of the Lagrange top is a smooth
complex manifold biholomorphic to J(Cy; ooi)\Doo where Do = ¢~ (p) for
some p € J(Cy) and J(Cy;o0T) is the generalized Jacobian of the elliptic
curve Cp, with two points at “infinity” identified;

(ii) the Hamiltonian flows of the Lagrange top (2), (3) restricted to Ty
induce linear flows on J(Cy; o0o®). The corresponding vector fields (2) and (3)
have a Lax pair representation obtained from the Lax pair (14) by substituting
a = —mf and a = occ respectively, and using the change of variables (25).

According to the above theorem the Lagrange top is an algebraically
completely integrable system in the sense of Mumford [18, p.353]. Clearly
any linear flow on J(Cy;o00™) maps under ¢ (7) into a linear flow on the
usual Jacobian J(Cp). This is expressed by the fact that the variable I'y which
describes the nutation of the body is an elliptic function in time. It was known
to Lagrange [17] who deduced the differential equation satisfied by I';5. The
real version of Theorem 2.2 will be explained in Section 4.

To the end of this section we compare the Lax pair (14) and the Lax
pair for the Lagrange top obtained earlier by Adler and van Moerbeke [1].
Namely, if we identify the Lie algebras (R*.A) and (s0(3).[...]) by the
Lie algebra isomorphism

X 0 —z vy
yl—| z 0 —x
Z -y X 0

then (2) can be written in the following equivalent Lax pair form [1]

d
(26) E(A2X+/\M—F):[/\2x+)\M—F,_/\X+Q]

?

where

Q= (Q17Q2:Q3)7 M = (Qlang (1 =+ 771)93)7 ['= (r13r27 r3>: X = (0707 1) .
The Lax pair representation of (3) is given by

d
dt

Both Lax pairs (26), (27) can be also written in the Beauville form

(27) (MX+AM —T) =[x+ T, x].
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d .. Aa)
(8) — AN = A0, =]

where A(\) = A>x + MM — T, Indeed,

A(a) Ala) — A(A)}
A =

Now (26) is obtained by replacing as before ¢ = —m£23, and (27) is obtained
by letting a — oc.

Clearly the Lax pair (14) from Proposition 2.1 and (26), (28) are equivalent
in the sense that they define one and the same vector field. We can identify
them over C by making use of the isomorphism of the Lie algebras so0(3,C)
and sl(2,C) given by

A0, | = [Aw), ~[AN), Ax+ax +M].

0 —z vy

z 0 —x ——>—l— < €zt ey € = ex —lm
S ox 0 V2 \ez—& —ex )7 P T

Note, however, the following difference. The spectral curve of (26) is reducible
det (N + MM +T —pl) = —p (p> +£(N) =0,
FOO =2+ 200 + mhg N’ + (2h + m(m + Dhg)A\* — 2\ + 1,
but the spectral curve of (14) is not
det(A(N) — pl) = p*> = V2 = UW = p* — f(N) = 0.

The last observation will be of some importance for the next section. Earlier
Adler and van Moerbeke [1, p.351] proposed to linearize the Lagrange top on
an elliptic curve by introducing first a small parameter € in the corresponding
50(3) Lax pair. The new system has the advantage of having an irreducible
genus 4 spectral curve C. which fits the general theory, so we.can just “take
the limit” ¢ — 0. This computation, reproduced in [21] and used in [22], is
however erroneous.

By abuse of notation we call the curve Ch = {u? +f(\) = 0} with an
antiholomorphic involution (A, p) — — (A, ), the spectral curve of the Lax
pair (26). The curve C, is real isomorphic to the curve Cj, = {w* =5},
equipped with an ant1holomorph1c involution (A, p) — — (O, —1), so without
loss of generality we shall write Ch C.
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-3.  EXPLICIT SOLUTIONS

In this section we find explicit solutions for the Lagrange top (2). We
compute first the Baker-Akhiezer function of the s5((2,C) (or rather s5u(2))
Lax pair (14). This implies explicit formulae for the solutions of the Lagrange
top in terms of exponentials and theta functions related to the spectral curve Cj,
(see for example Dubrovin [8], E.D. Belokolos, A.I. Bobenko, V.Z. Enol’skil,
A.R. Its, V.B. Matveev [5]).Then we note that the Jacobian J(Cj,) of Cj is
just the Lagrange elliptic curve used in the classical theory which provides
explicit solutions in terms of exponentials and sigma function related to J(Cj).

By performing a unitary operation on the matrix (15) we may put its
leading term in diagonal form. Substituting a = —m€2; in (14) and using the
change of variables (25) we obtain the following Lax pair representation for
the Lagrange top (2)

d dA
29 A, B—2i— | =2i— = SJ— 2 = _
(29) [ : ldt] 2ldt +[A,B] =0, € i, 1 1

where

. _(An@A) Ap@ A\ (10 2
A_A([’/\)_(Am(l‘,)\) A22(t>)\)>—<0 —1>/\ -

( (1 4+ m)Q3 €Q1(Z)+EQ2(I)>/\_ I EF](I)+€F2(Z)
e Qi(t)+E(1) —(m + 1)€23 el (1)+eTH(r) —I5

and

- /10 Q, EQ () + € (1)
B =B, = (O ——1) T (6@1(1‘)+€Qz([) —2 ) .

The spectral curve of the above Lax representation is defined by
Ch = {det(AQN) — pl) = p* —f(N) =0},
SO = A 200+ m)ha A + (2h3 + m(m + 1) B2) N2 — 2mA + 1.

We sha}l also denote by Cj, the Riemann surface of the compactified affine
curve Cj,. The reader may note the “similarity” between (29) and the Lax
pair of the nonlinear Schrodinger equation (for a rigorous statement see

Proposition 5.1).
3.1 THE BAKER-AKHIEZER FUNCTION

Let us fix a solution A(z,\) of (29) defined in a neighbourhood of
t = 0 € C. We shall also suppose that the point P = (A, ) is such that
(1, —=1) is not an eigenvector of the matrix A(0, ).
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PROPOSITION 3.1. For any t € C in a sufficiently small neighbourhood
of the origin, there exists a unique eigenfunction

Yz, P) y

(30) ¥ =¥, P) = (Tz(tjp)) P=(\weC

of A(t, \) (called the Baker-Akhiezer function) satisfying the conditions
d

(31) ZiE\P(t, P) = B(t, \)'¥Y(¢, P)

(32) A(t, VY (t, P) = p'¥(t, P)

and normalized by

(33) w0, P)+¥30,P) = 1.

In terms of the coefficients A;(t, \) of the matrix A = (A;) we have
A0, ) p— A0, A)

34)  wlo,P) = ’ —

BH O = 0N = AnON A @)+ o — Az, )

p— A0\ A21(0, ) |

35) W*0,P) =

A, N + 1 —A1(0,N) A0, N) + g —An(0,N)

Proof. Let ®(¢, \) be a fundamental matrix for the operator B(z, ) — 21’%
normalized at t = 0. Then the general solution of (31) is written as

a6 wer—euyvon,  oeon=(y ). P=ouw.

As A and B — 21% commute, we have

(B(t, ) — 21'%) A, VO, N) = A1, M) (B(z, ) — 21%) Bt \) = 0 |
and hence A(t, N)®(t, \) = D(t, \)M(P) for some constant matrix M(P)
computed by substituting ¢ = 0. Thus M(P) = A(0, \) and
AW, N) = DL, MA@ V) D@, ).
The constants P1(0, P), W¥2(0, P) are uniquely defined by (32) and (33). Finally,
A, VY(t, P) = ®(1, \) A0, ) DLz, \) D(t, \) P(0, P)
=®, N p-PO,P)
= u¥(, P).
The formulae (34), (35) follow from (32), (33). L]

Denote by oot (respectively oo™ ) the point on Cj — Ch such that in its
neighbourhood /A% ~ +1 (resp. (—1)).
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PROPOSITION 3.2. There exists ty > 0 such that for any fixed t € C,
|t| < 1o, the Baker-Akhiezer vector-function Y(t, P) is meromorphic in P on
the affine curve Cj, and has two poles at Py, Py € Cy, which do not depend
on t. In a neighbourhood of the two infinite points oc™ on Cj, we have

( (1 -+ O()\—l)) exp(—%()\ + Q3)f), P—oct
G7)  Y'@,P) =/ .
OO Hexp(+5(A+ Q). P —oc”

\

( O(A"l) exp(—%()\ + Q3)t), P— oo™
(38) Y, P) =

L (T+0o7™) exp(+-§()\ +Q3)t). P— o,

where i = +/—1. Moreover, ¥'(t,P) (W*(t.P)) has exactly one zero on Cj,
and the refined asymptotic estimates of W' at oc™ and of ¥ ar ot read

£ Q) (i i |

(39) \Pl(z,P):[—E 1@);;6(2-@+0(/\-~>}exp(+§(x+93>f), Pooc™
) Q € 2 9 ; e« )

(40) W (1,P)= [+E 1@;; al® +O(A")} exp(—5(A+Q3)1), P—oct.

Proof.  According to (32), (W', ¥?) € Ker(A — pu/) and hence

PR, P) = A — (1 m)Q\ + T3(0)

(41) = .
Y P (EQi() + eQ(t) A — ET1(1) + e Ta()

If P— oo™ then p— A — (1 4+m)Q3\ ~ O(1) and using (29), (31), (32)
and (41) we compute

.d Y2(¢, P)
2i—InW'(t, P) = g = -
i I P) = A4 Q5 + (EQu(D) + e Qo(0) Figp) — T OO0 3
and hence

(. P) = (1+007") exp(—L(\ + Qa)r) .
In a similar way if P — oc™ we obtain
YA P) = (1400 ™) exp(+1 (A + Qa)r) .
To compute the remaining asymptotic estimates we use that if P —s oo~ then

‘Pl([: P) _ A12<t: /\) . ~_€Ql(t) I €Q2(t)
qu(tﬁp) H —All([: )\) B 2A

and if P — oc™ then

(42) o)
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lP2(ZL) P) . A21(ta )\> . €Q1(Z) 'J(_ EQZ(t)
Wi, P)  p—An(t,)) 2\

To find the poles of W(¢,P) in P we note that according to the proof of
Proposition 3.1 (and with the same notations) we have

(43) + 0\,

(44) P(t, P) = O(t, \)P(0, P), D0, \) =1,.

If |¢| is sufficiently small, the fundamental matrix ®(z, \) has no poles and
det @(z, \) # 0. It follows that the poles of ®(z, A\) and ®(0, A\) coincide, and
we can obtain them by solving the following quadratic equation

detA(0,\) = (A11(0,2) — App(0, V) = 422

(see (29, (34)) . One gets two time independent poles Py, P, € Cj, of W(t, P).
Finally, the meromorphic one-form dIn¥!' has a simple pole at oo™ with
residue +1 and is holomorphic in a neighbourhood of co™. On the other

hand W!(z, P) has exactly two poles on C), and hence it has one zero on C.
The same arguments hold for W?(t,P). [

Let A,,A,, By be a basis of H;(Cy,Z) as shown in Figure 2 (A;j0B; = 1),
and let wy, wy be a basis of H’(C,Q'(co™ + co™)), normalized by the

conditions
</ > (27”' 0 >
5 12 0 27mi)

We shall also suppose that w; is a holomorphic form on the elliptic curve
Cy, . Define now the period matrix

2ni 0 7
H—< 0 2w 7'2>’

71:/ wi, 7'2:/ Wy, Re(m) < 0.
B| 'Bl

Recall that the generalized Jacobian J(Cp; ocoT) of Cj, relative to the modulus
m = oot +00~ is identified with C?/A where A is the lattice in C? generated
by the columns of Il. Let

where

o

0@ =0nG| )= Y exp{jnir+3’+@e+mV-Dn+3}, zeC
3]s

611(0):07 911(Z+27Ti):—911(2), (911(2*!-7'1):—€Xp(—Z_%T1)011(Z).

DI —

be the Jacobi theta function with characteristics [
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Denote by Q the unique Abelian differential of second kind on Cj, with
poles at oo™, principal parts +Ld\ where P = (A, p), i = v—1, and
normalized by f A Q=20.Let Py c C, be a fixed initial point, ¢*, U be the
constants defined by

p N4 +00TD, P— oot

(45) /Q: 2 : /Q:'U.
Po l Bl

+5A+ ¢t +0\"h, P—oo”

Define the Abel-Jacobi map
T P

A: DV(Cy) = J(C) = Y Pi= Y Qi / W .

L Qi

Here, and henceforth, we make the convention that the paths of integration
between divisors are taken within C; cut along its homology basis A, By,
which we assume does not contain points of these divisors.

PROPOSITION 3.3. The Baker-Akhiezer function is explicitly given by

- [P 0 01 (AP+ooT =P —Py)+1U)
4 I _ , P
(46) W!(r, P)=const; - exp Lr(/POQ c 2!23)_ o (Ao 0o~ —Pr—Py)+1U)
2 i g : ] Qll(A(P+OO+—P1—P2)+ZU)
47) W1, P)= ) - Q—ct+4
47 (t, P)=const; - exp Lt(/Po c —!—293)# 911(A(oo++oo——P1—P2)+tU)
where
O (AP —o00T)) O (Alco™ —~ P)) 01 (A(cot — Py))
const; = - .
011 (A(cot —co™)) b1y (AP — P)) 011 (AP — Py))
S 611 (AP — co™)) pat (A(co™ = P1)) 611 (Ao~ — Py))

011 (A(co™ —o00t)) 011 (AP — P))) - 011 (AP — Py))
and Py, P, are the poles of Y.

The proof of the above proposition is based on a general fact: the properties
of ¥ enumerated in Proposition 3.2 define it uniquely. Indeed, if ¥ and ¥
are vector functions both satisfying the assumptions of Proposition 3.2, then
the functions ¥! and W! (resp. ¥2 and W?) meromorphic on C, have the
same poles. Using this and the asymptotic estimates at infinity we conclude

that ‘{’1/\:1?1 and W2/¥? are meromorphic functions on Cj, which have one
pole (at ¥' = 0). Moreover

¥i(t,007)/Pi(t,00T) =1,  Wat,007)/Walt,007) = 1
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and hence ¥ = V. Finally, the reader may check that the functions (46)
and (47) have the analyticity properties from Proposition 3.2 and hence they
coincide with the Baker-Akhiezer function defined in Proposition 3.1. L]

3.2 SOLUTIONS OF THE LAGRANGE TOP
Let z = (z1,22) € J(Cp; 00%). Tt is easy to check that the functions

011(z1 £ 72) JFo
011(z1)

live on J(Cj; co™). We shall see that they give solutions of the Lagrange top.
By (16) we compute that c%z = constant, where

—1 .
o - AdA AdA At )

d\ B A
A, M

= —27i

0,

=

Ay

V1 o dX -1 27T _
(V2>_(A1/J,) (_ifAl%_'_aifAld_;\_)) a = mQ3

THEOREM 3.4. The following equations hold

SO

Oz —m)

(48) €Q (1) + € L2,(t) = consts ,
011(z1)
)
(49) eSL(ﬂ—%EgkﬂD::conn4—i!£Li:Qze+@,
011(z1)
where

7y = ZVQ, 71 =tV + A(OO+ + o0 — P — Pz),

(>8] 7 = A(cot —007) = / wWo
B
and
2iV; 0111(0) 011 (A(co™ — Py)) 611 (A(co™ — Py))
consty = : — _ )
011 (A(co™ —ooT)) O3 (A(co™ = P1)) 011 (Ao — Py))
comst, — 210,00 6u(Alco” =P) i (Alco” ~ Py))
oo (A(cot — OO_),) 011 (A(cot — P1)) 611 (A(cot — Py))
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Let us denote

w =+ +onh)d(Ah), P=(\p) — 0o™,
wy = (WA + 0 +0H) d(ATY),  P=(\p) — 0.

To prove Theorem 3.4 we shall need the following

LEMMA 3.5. The above defined differentials are such that
w?:—i/Q:—iVl, wg:i(c+—c_),
B

Vo = —ct 4+ ¢ +iQs, A(oo+—oo—):/w2.
B

Proof. The identity w9 = —i [ g 2 1s a reciprocity law between the
differential of the first kind w; and the differential of the second kind €
[13]. It is obtained by integrating w(P)w;, where m(P) = flfo Q, along the
border of Cj, cut along its homology basis A;, B;. On the other hand

(/ d)\>—1 d)\
wy = 27 - - —
A M H
A\ !
‘w(l):—Zm'(/ ——) = —iV;.
A M

Similarly the identity w) = i(ct — ¢~) is a reciprocity law between the

differential of the third kind w, and the differential of the second kind Q,
and A(cc™ — 007) = f& wy 18 a reciprocity law between the differential
of the third kind w, and the differential of the first kind w;. Finally, as

and hence

, AdA N N AdA
wy = [—‘g‘f\— o — AR we have w) = —F - — (1 +m)Q; = =iV — Q;
Ta T s |

and hence Vo, = —c™ + ¢~ +iQ5. [

Proof of Theorem 3.4. According to (42), (43)

i} . AP, P)
Qi (¢ Qo) =-2 1 —_— L
i+t ="2 In GG p
and
AP2(t, P)

eC(t) + EH(H) = +2 1i —_—
1 () + €€2(2) +P—1>2+ Y0P
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To compute the limit we use (46), (47) and

. ;o d s ,
Jlim AP 011 (AP — 007)) = 6,,(0) — 0/ w1 = w 0;,(0)

s=

P—oo

: / d y /
hIIl+ A(P) 1, (,A(P — OO+)) = 911(0) E 0 / Wy = W(l) 811(0)

(see Lemma 3.5). [

3.3 EFFECTIVIZATION

Let p,(,0 be the Weierstrass functions related to the elliptic curve I’
defined by

(51) n* =4 — gl — g

(we use the standard notations of [4]).
Consider also the real elliptic curve C with affine equation

(52) WA XN+ a X+ o) +ah+as=0

and natural anti-holomorphic involution (A, u) — (X ﬁ), and put

a\* a a
(53)  pe=a+3(Z) -4
It is well known that the curves C and I" are isomorphic over C and that
under this isomorphism
dr d
(54) s o :
H 7
Following Weil [25] we call T" the Jacobian J(C) of the elliptic curve C and
we write J(C) = I'". Note that J(C) and T'" are real isomorphic and that J(C)
and C are not real isomorphic.
Further we make the substitution (23) and C becomes the spectral curve
Cy of Adler and van Moerbeke {p? +f(A\) =0}, where

FOU = M 421 + m)ha N’ + (283 + m(m + Dhg)A* — 2\ + 1

and T becomes the Lagrange curve I',. Recall that, as we explained at
the end of Section 2, the curve C, with an equation {u*> = f(\)} and
antiholomorphic involution (A, ) — O, —71), 1s 1somorphic over R to 5;1,
so we write Cj = Eh. The Jacobian curve J(C,) = I', was computed by
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Lagrange [17], while C;, appeared first in (1, 21] as a spectral curve of a Lax
pair associated to the Lagrange top.

Recall that o(z) is an entire function in z related to ((z), p(z) and the
already defined function 6;;(z | 1) on Cj as follows:

. O 4
(@) =—p@ , o(z) (@, dz
_ G [ZUOY g2
(55) O'(Z) — Ugil(o) eXp { 69;1(0) } e 24() T ’

where U is a constant depending on g, and g3. We shall also use the “addition

formula”
olu+v)olu —v)

o2(u) o%(v)

To state our result let us introduce the notations

= p(v) — ().

2x; =€ Q) + €L, 2xy = €Q + €€y, €2 =+v—1
(56) 291 =€ 4+€el, 2y =€l +€°Ty, P?=—1
p1 = —imQy, pr = —1Q3.
The system (2) is equivalent to
Xy = +pix; =y, yi=—pay1 +x1l3
(57) Xy = —p1x2 + Yy, Y2 = +pay2 — x2l3
P1, P2 = constants, I3 = 2x Y2 — 2x5y]

with first integrals Iy = 4x;xy — 205, I} = 4x1y, + 4x2y; — 2(p, + p2)I'3 and
L =T5 —4yy,.

THEOREM 3.6. The general solution of the Lagrange top (2) can be written
in the form

I okt D .,
M0 = = oD 0= = D
_ot=Rot =D 4 oo+t +D) -,
N0 = e ® oD € 20 = @ o €
oG+ Rolt—R o+ hot—1)
I3() = 20) 02(0) B0 —20(1) + p(1) + p(k)
p1=a— () — ((k) p2=—a— (k) —C(D)+2¢(k+ 1),

where ¢y, g3, a, b, k, | are arbitrary constants subject to the relation
3
92 — 279?% # 0.
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REMARK. The non-general solutions of the Lagrange top are obtained
from the above formulae by taking the limit g3 —27¢3 — 0. The formulae
for the position of the body in space, and in particular for T'3(¢), yi(¢), y2(?),
are due to Jacobi [15]. The expressions for x;(z), xx(¢) were first deduced by
Klein and Sommerfeld [16, p.436]. Note however that in [16] the constant a,
and hence the invariant level set on which the solution lives, is not arbitrary.

Proof. To make the solutions of the Lagrange top effective we use
the following 4-dimensional Lie group of transformations preserving the
system (57):

t
x1 — Uxje“t?, Xy — Uxpe 470, [ — 7 +T
(58) y1 — Uy e, y2 = Ulyre ", I3 — UTh
p1 — Upr + a, p2— Upy—a

where U # 0, T, a, b are constants.

The group (58) transforms x; from (48) (see also (56), (55)), where
21=tU—-TU, z1 — 1 = ({t — k— DU as follows

011(z1 — m2) _ ot — k=1 pat+b

011(z1) ook +1)

x1(t) = const

(we used the fact that
011(z1 — 12) 0 (2)
Ori(z)o(t—k—1)

is a constant). The variable x; is computed in the same way.

If we define the constant k by the condition y;(# — k) = 0, then the first
equation of (57) gives

n® X0 ot —=k) ()
e T n@ coet—k—1

where h(¢) is a meromorphic function on C, such that y;(¢)/x;(¢) is single
valued with poles at +t = 0 and ¢ = k + [, and residues (—1) and (+1)
respectively. These three conditions define A(¢) uniquely :

ot —Dolk+1)

W)= — e

which implies the formula for y;(#). The expression for y,(#) is obtained in
the same way.
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To deduce an expression for I';(z) we use the fact that
T3(f) = 2x13p — 3o = —20(t) + 2p(k + ) — 1o .

The value of Iy is easily computed by using the third equation of (57) and
the formulae deduced for xy,y;. By substituting r = k we obtain
ok—Dolk+1D

B0 = = o2 = ¥O — #®

and in a similar way I'3(l) = (k) — p(l). We conclude that

[3(8) = =2p(0) + p() + p(k) .

Finally, to compute p;, p, we shall use once again (57). As y;(k) =0 we
have
_xitk)y 4
Coxk)  dt

Inx; (1)

P1
t=k

d
— ——1 — S
o no(t—k—1)

=a— () —Ck).

In a quite similar way we obtain

d
— —1
= no(t) - +a

t=k

d
pr= -2l = —a=C0) ~ (O +20k+D.

Theorem 3.6 is proVed. []

REMARK. If we impose the condition
M+ +T5 =T -4y =1,

then

<0(Z—|— kyo(lt—k) o(t+Do(t— l))2 B o(t—k)o(t — Do+ k)o(t+1)
o2(k) o(t) a2(l) o(¢) a2t ok)o(l) o2(t) o(k) o(])

(oGt +kot—k oct+Do@—1) 2 ,
N ( a2k o2t o2 o) > = (pto) = p())” =1

and hence @(k) — () = +1.
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4. REAL STRUCTURES

Recall that a real algebraic variety is a pair (X,S) where X is a complex
algebraic variety and S: X — X is an anti-holomorphic involution on it. The
set of fixed points of S is the real part of (X,S). S acts on the group of
divisors Div(X) : if D € Div(X) is defined locally by analytic functions f,,
then S(D) is defined by the analytic functions f, oS. Thus it is natural to
define an involution S* on the sheaf of analytic functions Oy

S*:T(S(U),0x) = T(U,0x) : f—foS.

This also induces an involution on the groups of one-forms and one-cycles.
If we H(X,Q"), c € Hi(X,Z), then [ S*w = [ w. A form w is S-real
if and only if $*w = w and one may always choose a basis of S-real forms.
In the case when X = Cj is the spectral curve of the Lagrange top, the
action of S on Div(X) induces an involution on J(Cj;co*). This, however,
does not suffice to determine the real structure of the invariant manifold
Ty, ~ J(Cy; 00¥) \ ¢~ 1(p) (Theorem 2.2), as it will also depend on the point
p € J(Cp). Recall that the symmetric product S2C, is bi-rational to T},. Thus
the generalized Jacobian and the invariant manifold 7j are identified by the
Abel map

(59)  A: S?Cyp — J(Cpy00T) 1 Py + Py — W, w = (w1, w,) .
Wi +W,

This induces an involution on J(Cj; c0%), z — S(z), where

Pi+P; S(P1+Py)
7= / W, S() = / w .
Wi+W, Wi+W,
Of course this depends on the fixed points Wi, W, & J(Cp; 00%). Let wy,wy
be S-real . Then '

S(W+Ws) S(Py+Py) S(Wi+W2) P\ +P;
S(z):/ w+/ w:/ w+/ w = S0)+z.
S

Wi+W, (W1 4+W2) Wi +W, Wi +W,

If S has a fixed point on J(Cp; 00t) (this does not depend on W;, W,) then
one may always choose it for origin, and hence S(z) = Z becomes a group
homomorphism.

Denote by S the anti-holomorphic involution on the spectral curve Cj
defined by S(\, 1) = (A, —f). This involution comes from the real Lax pair
of Adler and van Moerbeke defined in Section 2. We shall also suppose that
the real polynomial f(\) has distinct roots. S induces an involution on the
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usual Jacobian J(Cj,) which we also denote by S, and an involution on the
generalized Jacobian J(Cp:00%) which we denote by St. If we use (59),
then in terms of the Jacobi polynomials U, V, W, it is given by

St (U,V,W)— (U,-V,W).

There is another natural anti-holomorphic involution on 7, given by the usual
complex conjugation L

(Q,‘,F,‘) = (Qi:ri) )
which we denote by S~ . In terms of the Jacobi polynomials (12) it is

ST (U, V,W) — (W, V., D).

PROPOSITION 4.1. The holomorphic involution St oS~ = S~ o ST on
J(Cy; 0o%) is a translation on the half-period %Az, where gb(—é—/\z) =0eJ(Cp)
(see (7), (9)).

The proof of the above Proposition will be given later in this section. If
¢ is the projection homomorphism defined in (7), then it implies

poStT=¢goS =50¢.

In other words the anti-holomorphic involutions ST and S~ “look alike” in
the same way on the usual Jacobian J(Cj) and differ in a half-period in the
“vertical” direction with respect to ¢ on the generalized Jacobian J(Cj,; 00¥).

An important feature of ST is that the S -real part of the invariant level
set T, is preserved by the flow of (2). Indeed, changing the variables as

Q — iQ, Q) — i, Qs — Qs
Iy —ily, I —ily, I's — 15,
we obtain a new system
Q= -mQQs — Ty, I =103 — I5Q,,
(60) Q) =mQ, +1, I =T50, —1Q;,
Q3 =0, [y =10 —T1Q;,
with first integrals
H =-T%-T5+T3, Hy = -} — QT + (1 4+ m)QsTy,
Hy=3(—Qf -+ 1 +mQ3) —T;, Hy=Qj.

The anti-holomorphic involution S in these coordinates is given again by
the complex conjugation.
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THEOREM 4.2. In each of the three connected subdomains of the comple-
ment to the discriminant locus of f()\) the topological type of the real part
of the algebraic varieties (J(Ch; ooi),Si) and (Ty,, S*) is one and the same
and is given in the following table, where T? = S' x S!.

roots of f(\) no real roots | two real roots | four real roots
real part of (J(Cp;00F),ST) T2 72 T* x (Z./2)
real part of (J(Cp;00F),S™) T? @ @

real part of (Tn,S™T) S' xR S' xR T>U(S' x R)
real part of (Tp,S™) T° 5} %)

REMARK. It is easy to check that when the real invariant level set Ty of
the Lagrange top is non-empty, then the polynomial f(A) has no real roots. If
we do not use the generalized Jacobian J(Cj;coT), then it might be difficult
to understand the relation between T,f (which has one connected component),
C,If (which is empty) and J(C,)® (which has two connected components) (cf.

(2], [3, p.-37)).

Proof of Proposition 4.1. We have ST oS~ : (U,V,W) — (W,-V,U).
The involution (U,V,W) — (U,—V, W) is obviously induced by the elliptic
involution i: (A, u) — (A, —p) on Cj so it is a reflexion. This means that if a
fixed point of i is taken for origin in J(Cj; coT) then i = —identity. It remains
to prove that j: (U,V, W) +— (W,V,U) is a reflexion too. The involution j
has the following simple geometrical interpretation. Let P, P, be two generic
points in the (), 1) plane and lying on the affine curve Cj, = {p? =f)}. If
{p = V(A)} is the straight line through P; and P, then it intersects C, in
four points P;, P,, P53, P4 and then j(Py + P;) = P3 + P,4. Indeed, if the zero
divisor of the Jacobi polynomial U()\) on Cj is P, + P, +i(Py) + i(P5), then
by (13) the zero divisor of W(\) is P3+ P4+ i(P3)+i(P4) and the involution
Py + P, — P3 + P4 amounts to exchanging the roots of U(\) and V()).

Let W;, i=1,...,4 be the Weierstrass points on Cj,. Then
4
p— V(>\)> =V
Py — Wi, — ~ 1
( WIS :

and hence on J(Cj;c0t) ~ Divo((fh)/ ~ we have P, + P, = —P3 — P, +
constant. This implies that j is a reflexion. Thus we have proved that ST oS~
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is a translation (S+ OS_)(z) = z+a. Finally, a is easily computed. We have
i(Wy) = Wi, j(W, + Wp) = W5 + W, and hence a ~ Wy + W, — W5 — Wj.
Further if \;, \; are zeros of f()\), then (g) = W) + Wy — W3 — Wy, where
g = (A = A\ — \) /. Moreover g(ooT) = £1, g*(co®) =1 and hence

m

WiAWo—Ws—Wy ~ 0, Wi+Wo—Ws—Wy £ 0, 2(W;+Wr—Ws—Wy) ~ 0.
This shows that a is a half-period and ¢(a) =0 € J(Cy). L[]

Proof of Theorem 4.2. The proof will consist of two steps. First we
determine the action of S* on Hl(é;1, Z) and hence on the period lattice A.
From that we deduce the first two lines of the table. Second, we determine the
action of S*: D, — Do on the infinity divisor Do = ¢~ 1(p) = C*/A; ~ C*
and then we use that

real part of (Th,Si) = real part of (](Ch;ooi),Si) — real part of D, .

It is easier to determine the action of ST on A. Indeed, ST is induced
by an anti-holomorphic involution on Cj,, S*: (X, u) — (A, —g ). Note that
ST always has fixed points on J(Cp;00F) : if Wy, W, are two Weierstrass
points on Cj, such that either W, = W,, or W, and W, are ST -real, then
ST(W, + Wy) = Wi + W,. On the other hand S~ has fixed points only
if f(\) has no real roots. Indeed, in this last case let W;, i = 1,....,4,
be the Weierstrass points of C, where W, = W,, Wi = W,. Then
JWi + W3) = W, + Wy (see the proof of Proposition 4.1) and hence
ST(W; + W3) = W, + W3. On the other hand if U = W and V = ¥V
then

»

VZO) + UMW) = [V + UM =f0) >0  YAER,

and hence f(\) has no real roots.

Suppose first that f(A) has no real roots and let us choose a basis Aj,
Bi, Ay of H|(C),Z) as shown in Figure 2 and in Figure 3 overleaf.

Then S*(A;) = Ay, ST(A;)) = Ay and it is easily seen that ST(B;) + B,
is homologous to A, on Hl((:’,1,Z). Thus in the basis A;,A,, B; the matrix
of the involution S*: H\(Cy, Z) — Hl(éh,Z) takes the form

1 0 O
0 1 1
0 0 —1
From this and the fact that (J (Cy; ooi), S“L) 1s not empty we conclude that the
real part of (J(Ch; oo™), S+) is a torus with generators the periods |/ 5 w and
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z S*(By)
N
B>
FIGURE 3

Projection of the cycles Ay, By,Ay, ST(B)) on the A—plane

J4, w. On the other hand the real part of (J(Cp; 00%),S7) is also non-empty
and SToS~ is a translation. We conclude that the real part of (J(Ch; co¥), S -‘)
is just a translation of the real part of (J(Ch; ooi),S+) and in particular it is
generated by the same periods.

In a similar way we find the real part of (] (Cp; 007), S+) in the remaining
cases. Note that in an appropriate Z basis of H{(Cj,Z) the matrix of the
involution S¥*: Hl(C’h,Z) — Hl(éh,Z) takes the same form if f(A) has two
real roots, and it 1s of the form

0 0 —I

if f(\) has four real roots. This implies the first two lines of the table.

Let us determine now the real part of (Do, ST). As Do, = C*/A, then
we have to compute S*(A,). Note that, as the real invariant manifold 7}, is
compact, then (Do, S7) is always empty. On the other hand (D, S™) is never
empty. Indeed, if ST(\, ) = (A, —75) then for Q € C;, the point Q + ST(Q)
is St-real on J(Cp;00%). As ST(cot) = 0o~ we see that an ST -real point
of ¢~!(p) is obtained by taking the limit Q +— oo™ in ST(Q) + Q along an
appropriate real analytic curve on C,. Finally, from the computation of the
action of ST on A we get ST(A;) = A, which shows that the ST -real part
of (¢~ (p),ST) is always a circle R/A,. This gives the last two lines in the
table. [
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5. THE LAGRANGE TOP AND THE NON-LINEAR SCHRODINGER EQUATION

Our final remark concerns a previously unknown relation between the real
solutions of the Lagrange top and the one-gap solutions of the nonlinear
Schrodinger equation

s , 2
(NLS™) Uy = 1, == 2]uj"u.

In the physical applications both forms of (NLS) are of interest. Comparing
Theorem 2.2 to the results of Previato [20] we note that the invariant manifolds
of one-gap solutions of the NLS equation are isomorphic to the invariant
manifolds of the Lagrange top. This relation can be made explicit if we
compare the expressions for the solutions found in Theorem 3.4 to the well
known formulae for u(x. 1) (cf. [5. 20]). We shall see that the S* -real solutions
of the Lagrange top give also one-gap solutions of NLST equation. Recall
that. according to the preceding section. an S~ -real solution is a usual real
solution of the Lagrange top (2). and that an ST -real solution is a real solution
of the system (60).

Let Xp. Xq. be the Hamiltonian vector fields (2) and (3) respectively and
put ,

— = 3Xg. % = 10n — DQ3Xg + § (2hs — Bm + DQ3) Xq, .
As g—\ and % define translation invariant vector fields on the generalized
Jacobian J(Cj: >™) then fixing an arbitrary point for origin we may introduce
(x.1) coordinates on J(Cj: =) (and hence on the complex invariant manifold
Ty). If the real part T }f of Tj, is not empty. then we shall choose for origin
a real point. As the real vector fields % and % are tangent to the Liouville
torus TR. then (v.r) provide real affine coordinates on it. Denote, lastly, by
u— (x.1) the restriction of the function €Q; + ¢Q> on the Liouville torus T,lf
of the Lagrange top (2).

Similarly. let u7(x.r) be the restriction of the function €Q; + €, on a
connected component of the S -real part of J(C;: >c®). If the origin belongs

to this component too. then as above we conclude that x.7 € R.

PROPOSITION 5.1.  The functions u™(x.1) and u™(x.1) satisfy NLS™ and
NLS™ respectively.

The proof of the above Proposition is a straightforward computation
(compare with [20], Theorem 2.2). From the definition of u® we get
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BT =€Q+eQ) and ut = —€Qy — e Q. It follows that {ui|2 = F(QI+3)
and it is easy to check that

ut = iufb + 2|ui yzui

is equivalent to the system
Qx4 (Q2)r = 20,(QF + Q3)
(Q)ax — (Q1)r = £20,(QF + Q9)

where Q;,Q, are defined on the S*-real part of T} respectively. Using (2)
we get for the derivatives along Xg

Ql + (m— 1)Q3Q2 = ~mQIQ% — QI3

and as
=3+ +1+mQ3) —E,

then
Q)+ (m— D3 = —101(QF + Q) + Q) (E — 22HQ3) .
Finally, as Xg,0 = —€; we conclude that

Qe + () = —2Q(QF + Q)
() — (1) = —20,(Q% + Q3).

This proves also that u™ is a solution of NLST (we just have to substitute
Ql = lQl 5 Qz — ng) D
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APPENDIX : LINEARIZATION OF THE LAGRANGE TOP
ON AN ELLIPTIC CURVE

The purpose of the present Appendix is to give a brief account of some
“well known” facts concerning the linearization of the Lagrange top on an
elliptic curve. All algebraic varieties below come equipped with real structures.
We shall make the following convention. If the complex algebraic varieties
Vi and V, are isomorphic over R, then we shall simply write Vi = V5.

Further we shall suppose that the invariant complex level set

Th={@QDeC  H=1,H=h, Hy=h, Hi=h}

of the Lagrange top (2) is smooth, and moreover A = (hy, h3,ha) € R>.
Thus T} has a natural real structure, and if 7} is its real part we make the
assumption TR # @. Recall that to 7}, we associate the following smooth
algebraic curves:

(1) the Lagrange curve I, = {772 = 483 — g€ — g3} where g = g2(h),
g3 = g3(h) are given by (53) and (23). The polynomial 4&% — g,& — g3 has
three real roots, so the curve I', has two ovals. Denote by T, the completed
curve I7.

(i) the spectral curve C, = {u?> + f(\) = 0} of the Lax pair of
Adler and van Moerbeke (26), with the natural anti-holomorphic involution
(A, ) — (N ), where f()) is given by (24). It is isomorphic over R
to the curve C, = {BZ = f(M)} with an anti-holomorphic involution
A ) — (O, —m), so C, = Cj. The polynomial f(\) has two pairs of
complex conjugate roots.

(111) the Jacobian J(Cj,) = Picz(Ch) of C;, which is identified, via the
Euler-Weil map ([25]), to the Lagrange curve Ty, so J (Cy) =T5.

According to the context the curves C),, C, will be considered either as
affine, or as completed and normalized curves.

Recall also that the generalized Jacobian J(Cy; 0o™) = C2 /A of the elliptic
curve C;, with two points identified is defined as an extension of J(C),) by C*

exp

0% C* 5 J(Ch00t) L J(Cy) — 0.

By Theorem 2.2 the invariant complex level set T}, identifies with J(Cy; coT)—

Do, where Do, = ¢~ 1(p), p = co € T, so we obtain the following exact
sequence

61) 0% 51,51, 50,
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Denote by T, the variety T), completed by the curve Dao, so Ty = J(Cp; 00T).
It follows from Theorem 3.6 that a point ¢ € J(C,) is defined by I'3(¢) and
its derivative in ¢, and hence

¢:Tp — T (Q, 1) — (1,8

(62) |
E=—3T3, n=—24I50) = —1T1Q — Q).

The map ¢ in (61) defines a C*-action on T, which is just the action of the
linear complex flow of (3). The latter is obviously given by

Q) £iQ) = Q) £ i), (M3, T3) — (M3, T3)

(63)
T, +i0, — (0 £iTy), e’ e C*.

This C*-action is free and compatible with the projection map ¢ so we have
a well defined quotient map

gb: Th/C* — Fh ;
which is an isomorphism. It is obviously prolonged to the isomorphism
¢I Th/C” — fh .

As T is a first integral of (3), then the corresponding flow is projected on T,
to the identity. According to Theorem 3.6 we have ['3(f) = —2¢(¢) + constant,
and hence the flow of the Lagrange top is projected to a linear flow on the
Lagrange curve I',. The real part of T} is a torus TR ~ S; X S; on which the
real flow of (3) defines a free circle action ® = S' compatible with ¢. T, ,f
is compact and connected so is qﬁ(T,I}). It follows that gb(T}f) = qﬁ(T,? / ER) is
contained in the compact oval of the Lagrange curve I',. In fact, ¢ provides
an isomorphism between TR /% and this oval. Indeed, the only thing we need
to check is that the pre-image of a point on this compact oval, under the map
¢: TR — T, is a single orbit of the system (3), that is to say.a circle. But
a point ¢t on I, is determined by I'3(#) and %T},(r) = 1418, — I,Q;. This
combined with the first integrals amounts to fixing €23, I's, the lengths

Q?+Q2, Ti4T3,
the scalar product
Qi + QI
and the vector product
F1 Qz — Fle

of the real vectors (£2;,€2,), (I';,I;), which defines a circle. To sum up, we
have
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THEOREM A.l (Lagrange linearization).

(i) ¢: T,/C* — Ty is an isomorphism.

(i) ¢: T,/C* — T, is an isomorphism.

(iii) The image of the flow of (3) on T, is the identity, and that of (2) is
[inear.

(iv) The map ¢ provides an isomorphism between T,lf /R and the compact
oval of the affine real curve 1.

The above theorem may be attributed to Lagrange [17, p.254] who
computed the differential equation satisfied by the nutation I'3(7). It worth
noting that this computation was published in 1813 (the year when Lagrange
died) by Poisson [19] as completely new, and without mentioning Lagrange.

There is another more sophisticated way to linearize the Lagrange top on

the elliptic curve I';,, by making use of the Lax pair representation (26) (see
[1, 21, 24, 2, 3])

d

= (NPx+AM -T)=[Nx+ M —-T, \x+Q].

Namely, let Cj, be the affine curve 5;, with its Weterstrass points removed
(they correspond to the roots of f()\)), and put A\ = My + M —T.

As —p(p? 4+ f(N) = det(A(\) — ul), then for (\,u) € C, we have
dim Ker (A()\) -l ) = 1. It follows that the variety

{\, ) € C, [vo,v1,v2] € CP? : (v, v1,v2) € Ker(A(N) —uh} C Cj, x CP?

is smooth and it is easy to check that its closure in {C, Uco™ Uoco™} x CP?
is also smooth, so we have a holomorphic line bundle on the compactified and
normalized curve {C, U oot Uco™} (this also follows from [12, Proposition
2.2]). One computes further that the degree of this bundle is 4 and there is
always a meromorphic section with a pole divisor D = R, +R_ 400t +00™.
Of course, the divisor D depends on the coefficients of the polynomial matrix
A(A), and hence on (Q,I’). Consider now the map

¢: Ty — Pic’(C) = J(Cp) = T,
Q1) — [Ry +R_]

where the divisor Ry = ()\(Ri), M(Ri)) c 6;, 1s equal to

I il

AMRL) = —————
(R4) TR

p(R+) = i (= T3 + (1 + m)hyA(Ry) + N(Ry)).
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Note that, according to Theorem 3.6, the map q? 1s prolonged to a holomorphic
map N

¢: Tn — PicX(Cy) = J(Cy) =T
We shall show that the map gb provides a linearization of the Lagrange top

on I,. It is obvious that gf) is compatible with the C* action (63) on Ty, T;,,
so we have the holomorphic maps

¢: Tp/C* — Ty, ¢: Tp/C" — T, po¢ T, — Ty
Remembering that T, is a complex torus, we conclude that if z € C/A ~ T,
then cz o ¢~ 1(z) = kz, for some k € Z, and hence EE provides a linearization
on I, too. The map 5 is a non-ramified covering of degree k* and it is
easy to check that k> = 4. Indeed, if R, + R_ is linearly equivalent on Ch
to 0ot 4+ oo, then Ry = o(R_), where o(\, ) = (A, —pu) is the elliptic
involution. It follows that
I'+idy Ty =iy
Q+iQ Q) — i
which shows that the pre-image of the divisor class co™ + 0o~ on I, with
respect to 5 o ¢~ consists of the four Weierstrass points on I,. Finally, we
note that 5(T,§/§R), as before, is contained in an oval of T,. In this case,
however, 5 provides a double non-ramified covering of TR/R to its image
— the oval of the curve [, = Pic? (Ch) containing the point co. Indeed, note
that the divisor class of cot 4 co™ represents a real point on Pic? (Ch). It
has exactly two real pre-images: the two Weirstrass points contained in the
compact oval of I';, and the remaining two Weirstrass points are not real.
Thus we have proved the following

d
— QI — T = EF3(I> =0

THEOREM A.2 (Linearization by making use of a Lax pa1r) Let Ty, be
the affine curve defined above, and

T, =T, \ {w, 1) € C®: QI — QI'y =0} .
Then
(1) gg ; Yo"h /C* — Ty is a non-ramified covering of degree 4.
(i1) 5 : Tp/C* — T, is a non-ramified covering of degree 4.
(iii) The image of the flow of (3) on T, is the identity, and that of (2) is
linear.

(iv) The map 5 provides a double non-ramified covering of TR/R to its
image — the oval of the compactified and normalized curve 1", =17, Uco
containing the point o0.
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Statement (iv) is due to M. Audin. In this form it appeared first in [2]
(Proposition 3.3.2) but the proof is not correct. Earlier Verdier [24] wrongly
claimed that the map CZ provides an isomorphism between TX/R and its
image. Statement (iii) is a well known fact, though it does not seem to have
ever been rigorously proved. Thus Adler and van Moerbeke [1] and then Ratiu
and van Moerbeke [21] proposed a “proof” based on a general scheme for
linearizing the flow defined by a Lax pair with a spectral parameter (e.g. Adler
and van Moerbeke [1], Theorem 1, p.337). The Lax pair (26) does not fit,
however, the general procedure, as its spectral curve is always reducible. Of
course this i1s only a minor technical difficulty as we may also use the Lax
pair (14). It was proposed in [1, p.351] and [21] to consider, instead of the
Lax pair (26), another Lax pair

dA€
64 = [A®, B€
(64) 7 [A%, B],
where in the notation of [1] we have
eh> B ip* 1
A=Ah)y=| -p* —w 0 |, B =BMh)= A (A 1A% (h)],
i 0 w !
[.1+ means “polynomial part” and
B=y+hx, y =75 (1 —in), x = - (Q — i)
Br=y+hx, =5y +im), X = 0= (Q + i)

iw = zol{h* + LQsh + 3 .
To obtain our notations from those of [1], we just replace
vi=-Ii, zo=L=1, L=1+m, h=)\.

For the spectral curve X, of A€ we obtain

det (A°(h) — 2I) = (eh* — 2)(Z* — w?) — 2B6*z

(65) 3 2.2 2
= —2" +eh 7" + (=288 + w?)z — eh’w? = 0.

This is generically a smooth irreducible genus 4 curve, so the Lax pair
(64) fits to Theorem 1, p.337 in [1]. Thus the flow of (64) linearizes on
Jac(Xc) and when € — O it goes over into a linear flow on the compact piece
of Jac(Xp) which is just the Lagrange elliptic curve. On the other hand the
differential equation (64) for € = 0 is, modulo a linear change of the variables,
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the original system (2) which establishes once again Theorem A.2, (ii). It is
easy to see, however, that the above approach does not work as for € # 0 the
Lax pair (64) does not define a differential equation. Indeed, note that (64)
1s equivalent to the Lax pair

0 1y
dA® eh )
(66) —E = [AO>BO] — ‘[" =3 I3 0
1 ) i
iy 0 —ims

Its (1,2) entry is computed to be

dg i ehy
— = — (y[3Q3 — hzol1y) — ——
I (13Q3 — xy3 + hzol)y) 2
and the (3,1) entry is
dp 1 ehy
| — = — ( — y[3Q — hzol
i 7 (= y1Qs + xv3 — hzoliy) + I

so y=0 and in a similar way y =0.
More generally, it is seen from the coefficients of the spectral curve X,
€ # 0, that the functions

Q4+ Q7 v+, Qi1+ Qo7 7, Q3

are invariants for any isospectral deformation of the matrix A¢. By continuity
these five functions are invariants for ¢ = 0 too, so the vector field in C°
obtained as ¢ — O is collinear to the linear vector field of (3). Of course
there is no analytic change of variables in C® which sends the orbits of (3)
to orbits of (2).
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