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THE COMPLEX GEOMETRY OF THE LAGRANGE TOP

by Lubomir Gavrilov and Angel ZfflVKOV*)

Abstract. We prove that the heavy symmetric top (Lagrange, 1788) linearizes
on a two-dimensional non-compact algebraic group - the generalized Jacobian of an

elliptic curve with two points identified. This leads to a transparent description of its
complex and real invariant level sets. We deduce, by making use of a Baker-Akhiezer
function, simple explicit formulae for the general solution of the Lagrange top. Finally,
we describe the two real structures of the Lagrange top and their relation with the
focusing and the non-focusing non-linear Schrödinger equation.
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1. Introduction

The motion under gravity of a rigid body one of whose points is fixed is

described by a Hamiltonian system on the cotangent bundle T* SO(3) of its

configuration space SO(3), coordinatized by Euler angles and their conjugate
momenta. This system was first obtained by Lagrange around 1788 [17], the

particular case of free rigid body motion being already known to Euler. After
a first reduction, with respect to rotations about the vertical in space, this
leads to the following two degrees of freedom Hamiltonian system on T*S2,
also obtained by Lagrange [17, p. 232 and p. 243]:

(1) ^=Mxü + xx r, A=rxß
at at

m ^ (^1,^2,^3), r (r1,r2,r3), x (xuX2,x3)-

Here M, £2 and F denote respectively the angular momentum, the angular

velocity and the coordinates of the unit vector in the direction of gravity, all

expressed in body-coordinates. The constant vector \ is the center of mass

in body-coordinates multiplied by the mass of the body and the acceleration.
We recall that M IQ where I is the matrix of the inertia operator and we

may suppose that I diag(/i,/2,/3). The system (1) may be viewed as a two
degrees of freedom Hamiltonian system on the manifold se*(3) ~ se(3) - the

Lie algebra of the Euclidean group of three space SE(3) S0(3) x R3. Indeed,

se*(3) with its usual Kostant-Kirillov-Poisson structure may be identified, via
(a multiple of) the Killing form, with se(3). This induces the following Lie-
Poisson bracket on se(3) ^ R3 x R3

{mum2} -m3,..., {mut2} -r3,..., {rhTj} 0

with coadjoint orbits

Ma{(M, O R6 : (r,r) 1, (r,M)=a}
and on each symplectic leaf (1) is Hamiltonian with Hamiltonian function the

energy of the body (see [21])

E~±(Cl,M)-(x,r).
Lurther we shall be interested in the case when the body is symmetric

about an axis through the center of gravity and the fixed point - the so-called

Lagrange top [17, p. 253]. This is equivalent to the conditions I\ /2 and

X (0,0, xs)' Without loss of generality we may also suppose that X3//1 1,

and if we put m (/3 - h)/h then (1) takes the form
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Qj —mQ2Q3 _ r2 rI r2o3 — r3o2

(2) q.2m£i3Qi+ri r2 r3Oi -rifi3
ù3o f3 ri£i2 - r2Qi

with first integrals

Hi =r]+r22 + r23

h2 - QiTi + n2r2 + (i + m)ü3r3

e H3=i (q? + ß2 + (i + ot)q3) - r3 •

Figure 1

The Lagrange top

Due to the symmetry of the body there is an additional integral of motion,

#4 n3,

which makes (2) Liouville integrable on the symplectic leaf

A4a {(ß,T) G R6 : r2{+rl + rl l, ^pFI + £^2^2 + (1 + m)Q3r3 a}

The Hamiltonian vector field generated by //4 on Ma is given by

02 rfi 1~2

(3) Ô2 —Oi r2 - —r 1

Ô3 0 r3 0

and it represents uniform rotations about the symmetry axis through the center

of gravity and the fixed point in space.

The Lagrange top is one of the most classical examples of integrable

systems and it appears in almost all papers on this subject. The explicit
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formulae for the position of the body in space in our case)

were found by Jacobi [15, p. 503-505]. In the last twenty years most of
the integrable problems of classical mechanics were revisited by making use

of algebro-geometric techniques. From this point of view the Lagrange top
takes a somewhat singular place - the results available are either incomplete,
or inexact, or even wrong. Consider the complexified group of rotations
C* ~ C/27hZ defined by the flow of the vector field (3). It acts freely
on the generic complex invariant level set

7ft {(ß,nec6 : Hl(a,r)^i,H2(a,ry^hz,H3(çi,r)
and it is classically known that the quotient manifold ThjC* is an elliptic curve.
The starting point of the present article is the observation that, generically,
the algebraic manifold Th is not isomorphic to a direct product of the curve

Th/C* and C* (although as a topological manifold it is). Let us explain first
the algebraic structure of the invariant level set ^. If A C C2 is a rank three

lattice

(4, A z(20")®z(2°.)ez(;;), R«(r,)<0

then C2/A is a non-compact algebraic group and it can be considered as a

(non-trivial) extension of the elliptic curve C/{2tt/Z®tiZ} by C* ~ C/2tt/'Z :

(5) 0 — C/27n'Z —f C2/A A C/ {2wiX© tïZ} —> 0, </>(Z|, z2) z,

We prove that, for generic hif the complex invariant level set 7), of the

Lagrange top is biholomorphic to (an affine part of) C2/A. The algebraic

group C2/A turns out to be the generalized Jacobian of an elliptic curve with
two points identified. This curve, say C, is the spectral curve of a Lax pair for
the Lagrange top, found first by Adler and van Moerbeke [1] and its Jacobian

Jac(C) C/{2niZ ® t\Z} is a curve found first by Lagrange. Further

we prove that the flows (2), (3) define translation invariant vector fields on

C2/A which means that our system is algebraically completely integrable.

Let us compare the above to the classical Lagrange linearization on an

elliptic curve [17] (see also [1, 21, 24, 3, 2]). It is well known that, due to

the symmetry of the body, the system (2) is invariant under rotations about

the axis of symmetry. These rotations are given by the flow of (3) which

commutes with the flow of the Lagrange top. Thus we have a well defined

C* action on the complex invariant level set Th ~ C2/A and a well defined

(factored) flow on Th/C*. Lagrange noted around 1788 that this factorization

amounts to eliminating the variables £2], £22, Tj, T2, so he obtained a single
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autonomous differential equation for the nutation 6, where r3 cos# [17,

p. 254] (nutation is the inclination of the symmetry axis of the body to the

vertical). Finally it is seen from this equation that r3(/) is, up to an addition

and a multiplication by a constant, the Weierstrass elliptic function pit). Thus

Lagrange linearized the complex flow of the Lagrange top on an elliptic curve.

This curve happens to be the Jacobian J(C) of the spectral curve C of Adler

and van Moerbeke and is identified with C/{27tzZ ® r\Z} in (5). The kernel

of the map ç is just the circle action C* ^ C/2tt/Z defined by (3), so

the linear vector field (3) is projected under 0 onto the zero vector field on

Jac(C) C/{2?r/Z © T] Z}.
To summarize in modern language, Lagrange's computation shows that the

generic invariant level set Tj7 of the Lagrange top is an extension of an elliptic

curve C ~ Jac(C) by C* and the flow is projected on this curve into a well

defined linear flow. This is, however, a very vague description of Th ~ C2/A.
Indeed, although the fibration

(6) C2/A Jac(C) C/{2tt/Z 0 tjZ}
is topologically trivial, it is not algebraically trivial, and to know its type

we need the parameter 7? defined in (4) (cf. [23]). As the general solution

of (2) lives on C2/A then, contrary to what is often asserted, it cannot be

expressed in terms of elliptic functions and exponentials. It is even less true

that "the flow of the Lagrange top lives on a complex 2-dimensional cylinder
with generator the line z 0" as claimed in [21, p. 232].

The algebraic description of the Lagrange top is carried out in Section 2

(Theorem 2.2). The Lax pair is used first in Section 3 where we construct
the corresponding Baker-Akhiezer function. This implies explicit formulae for
the general solution of the Lagrange top which complete and simplify the

classical formulae due to Jacobi [15, p. 503-505] for ri.r2,r3 and Klein and

Sommerfeld [16, p. 436] for the angular velocities (Theorem 3.6).

In Section 4 we study reality conditions on the (complex) solutions. Besides
the usual real structure of the Lagrange top given by complex conjugation
there is a second natural real structure induced by the eigenvalue map of the

corresponding Lax pair representation. It turns out that these two structures
coincide on Jac(C) but are different on C2/A (and hence on Th). The

corresponding real level sets are described in Theorem 4.2. This makes clear
the relation between the real structure of the curve C, its Jacobian Jac(C)
and the real level set Tf (a question raised in [2] and [3, p. 37]).

The results obtained in the present paper lead to the following unexpected
observation : the real solutions of the Lagrange top corresponding to its two
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real structures provide one-gap solutions of the nonlinear Schrödinger equation
(Proposition 5.1)

(NLS^ uxx iut d= 2\u^u

Finally, for the convenience of the reader, we give in the Appendix a brief
account of some more or less well known results concerning the linearization
of the Lagrange top on an elliptic curve.

Acknowledgments. Part of this work was done while the second author

was visiting the University of Toulouse III in June 1994. He is grateful for
its hospitality. We also acknowledge the interest of M. Audin, Yu. Fedorov,
V. V. Kozlov and A. Reiman to the paper.

2. Algebraic structure

Let C be the affine curve {/i2 =/(À)} where / is a degree 4 polynomial
without double roots. We denote by C the completed and normalized curve C.
Thus C is a compact Riemann surface, such that C CU oo+ U oo~, where
oo± are two distinct "infinite" points on C. Consider the effective divisor
m oo+ + oo~ on C and let Jm{C) be the generalized Jacobian of the elliptic
curve C relative to m. Following [23] we shall call m a modulus. We shall
denote also J(C; oo±) 7m(C). Recall that the usual Jacobian

J(C) Div°(C) / ~

is the additive group Div°(C) of degree zero divisors on C modulo the

equivalence relation ~ We have D\ ~ £>2 if and only if there exists

a meromorphic function f on C such that if) D\ — D2.. Similarly the

generalized Jacobian

J(C-,oo±)Div°(C) /~
is the additive group Div°(C) of degree zero divisors on modulo the

ffl Til
equivalence relation ^. We have D\ ~ D2 if and only if there exists

a meromorphic function f on C such that /(oo+) /(00~) 1 and

(f) D\ — D2. The generalized Jacobian J{C\ oo±) is thus obtained as a

C*-extension of the usual Jacobian 7(C) (isomorphic to C). This means that

there is an exact sequence of groups

(7) 0 C* A J(C; oo±) A /(C) -* 0.
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The map (p is induced by the inclusion CcC and ; ooU. r 0, is

the divisor of any meromorphic function satisfying /(oo+)//(oo~) r
[10, p. 55],

As an analytic manifold J(C; oo:t) is

(B) C2/A ~ H°(C,O1 (oo+ + oo")) * /Hi Z)

(9) Ai
r d\

JBi pi
XdX

where the lattice A is generated by the three vectors

f — \ / f — \JAi M Ao — JAl- ^ Aq —r XdX h 2 ~ [ f MA / ' 3 f
JA[ ß JA

2
J B

and the cycles A\,A2,B\ form a basis of the first homology group H\(C, Z)
as in Figure 2. It is seen that the period lattice A may be obtained by pinching
a non-zero homology cycle of a genus two Riemann surface to a point oo^

(Figure 2). This is expressed by saying that /(C; oo±) is the Jacobian of the

elliptic curve C with two points oo+ and oo~ identified [10].

Figure 2

The canonical homology basis of the affine curve C

For further use, note also that

(10) </>: /(C;oo±) —> /(C), 0: C2/A — C/0(A)

is just the first projection 0(zi,z2) — Z\. As

tsk \ f dX
0(A?) — 0,

Ja2 d

0(A) is generated by 0(AO and 0(A3), and

XdX\Ker cnz c*.
JA2 d J

As an analytic manifold the usual Jacobian /(C) is

C/0(A) ~ H°(C, O1 )* /tf, (C, Z).
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In contrast to the usual Jacobian /(C), the generalized Jacobian C2/A
is a non-compact algebraic group. For any p G /(C) define also the divisor

/>,<-- r V>c ./icirx-h.
An explicit embedding of a Zariski open subset of oc±) in C6 is

constructed by the following classical construction due to Jacobi (see Mumford
[18]). Let

(11) /(A) A4 + ßiA3 + ü2\2 + <23 A + a4

be a polynomial without double roots and define the polynomials

(12) U(X) A2 + MIA + M2, V(X)=VxX+V2,

Let Tc be the set of Jacobi polynomials (12) satisfying the relation

(13) /(A) - V2(A)

More explicitly, let us expand

3

f -v2 - uw ^2bt(uia1
i=0

bz a\ — 0\ — W\ b2 a2 — U2 — W2 — U) W\ — v\

b\ — — u\W2 — U2W\ — 2v\V2 bo <24 — «2^2 — ^2 •

If we take un ty, wu as coordinates in C6 then Tc is just the zero locus

VX&o,^3) as a subset of C6

Tc — {(w, to) G C6 : u\ + w\ a\ w2 + to2 + wi^i + i;2 <22

u\W2 + U2W1 -F 2v\V2 <23, U2W2 -\-v2 <24}

PROPOSITION 2.1. If f(X) is a polynomial without double roots, /20/7

(i) Tc is a smooth affine variety isomorphic to /(C; oo^) \ Dp for some

peJ(C);
(ii) any translation invariant vector field on the generalized Jacobian

J(C\ oo^) of the curve C can be written (up to multiplication by a nonzero

constant) in the following Lax pair form

(14) 2V=T^A(A)«L(A), AA]
dt L A — a J

where



THE COMPLEX GEOMETRY OF THE LAGRANGE TOP 141

a e C, and £/, V, W are the Jacobi polynomials (12).

Equivalently, if D P\ + P2 E Div2(C), where Pi (A,,/i/), i 1,2,

f/iew (14) can written as

d\\ d\2
A/T(ÄÖ A^(Â2)

(16)
À! JA!

+
vTAÖ V^AY)

Remark. Note that a 00 also makes sense. The corresponding vector

field is obtained by changing the time as t —» t/a and letting a —> 00. Thus

(14) becomes

(17) SvAT ^A(A) [,4(A), A,-v, ],

and (16) becomes

d\\ dX 1

+
(18)

AAY) vAY)

-yf-idt.X\dX\ X2dX2

Vf(M) yffiiï
The proof of part (i) of the above proposition can be found in Previato [20]

(see also Mumford [18]). It is also proved there that a translation invariant

vector field on the generalized Jacobian J(C; oo±) which is induced by
the tangent vector

a«) |AL, v7w

on C via the Abel map C —» ./(C; oo^), can be written as

(20) ± vwm-vMvw
de X — a

(21) £ww=_y«.)W<A)-lK„)VW
de X — a

(22) -V(X)Ujamy-W(a)U(X)
de 2(A — a)

Our final remark is that the translation invariant vector fields (20), (21)
and (22), which we denote further by ft, can be written in the following Lax
pair form (suggested by Beauville [6, Example 1.5]):
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A(a)
-2^A(A) A(A),

A — a

A(X)_fV(A)[/(A)A
A(A)~W(A) -V(X

By (19) the direction of the constant tangent vector computed above is

vm'
which proves (16). This completes the proof of Proposition 2.1.

Next we apply Proposition 2.1 to the Lagrange top (2). Let Ch be the

curve C as above, where

(23)

so

a\ 2(1 + m)h4 <22 — 2h3 + m(m + 1 )h\

<23 - —2h2 04 h\ — 1,

(24) CA {V A4 + 2(1 + m)M3 + (2A3 + m(m + 1 A2 - 2h2\ + 1}

Consider the complex invariant level set of the Lagrange top (2)

Th {(£2, D G C6 : H,(Q, T) 1, ff2(Q,T) h2,H3(Q, T) A,, ff4(Q, O

and the associated "bifurcation set"

B {/z E C3 : discriminant (/(A)) 0}

It is a straightforward computation to check that the linear change of variables

u\ — (1 + m)£l3 — z'Q2 ^2 —r3

(25) w\ (1 + m)Q3 + z'^2 1^2 —r3

Lf V2 —r i

(with i V~ï) identihes Tc and Th. Further, as

*r2
ar2-

A(A),
A(a)
A — a

A(A)
A(a) - A(A)

A — a
A(A), -ui

—a~w\ — A

—a — mi — A

the vector field (2) is obtained by substituting a — —mQ3 in (14) and using
the change of variables (25) (note that Q3 is a constant of motion). Similarly
the vector field (3) is obtained by substituting a oo (see the remark after

Proposition 2.1).
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To sum up, we have proved the following

Theorem 2.2. If h ^ B, then

(i) the complex invariant level set Tj7 of the Lagrange top is a smooth

complex manifold biholomorphic to J(Cj7; oo±)\DOQ where Dç^ ô~l(p) for
some p G J{Ch) and J(Ch\oo±) is the generalized Jacobian of the elliptic
curve Ch with two points at "infinity" identified;

(ii) the Hamiltonian flows of the Lagrange top (2), (3) restricted to Tu

induce linear flows on /(C/Aoo^). The corresponding vector fields (2) and (3)

have a Lax pair representation obtained from the Lax pair (14) by substituting
a — —mQ.3 and a oc respectively; and using the change of variables (25).

According to the above theorem the Lagrange top is an algebraically
completely integrable system in the sense of Mumford [18, p. 353]. Clearly

any linear flow on J(Qû oo±) maps under ç (7) into a linear flow on the

usual Jacobian J(Cty. This is expressed by the fact that the variable T3 which
describes the nutation of the body is an elliptic function in time. It was known
to Lagrange [17] who deduced the differential equation satisfied by Ts. The
real version of Theorem 2.2 will be explained in Section 4.

To the end of this section we compare the Lax pair (14) and the Lax
pair for the Lagrange top obtained earlier by Adler and van Moerbeke [1].
Namely, if we identify the Lie algebras (R3.A) and (so(3),[., .]) by the
Lie algebra isomorphism

then (2) can be written in the following equivalent Lax pair form [1]

Q (Qi,Q2,£23), M= (Q,,Qir(l+m)Q3), I"- (I 1%. J o. \ - <0.0. 1).

The Lax pair representation of (3) is given by

Both Lax pairs (26), (27) can be also written in the Beauville form

(26) jt(A2x+ AM-T) [A2x + AM-r, Ax + ^]
where

(27) I (A2x + AM-r) [A2x + AM - r, x].
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(28) -t/(A)at
4(A) m

A -,
where A(A) A2x + AA? — T. Indeed,

- A)A(A>,^
A — a

A(A),
X — a

— — [^(A), Ax + ax + M]

0 -z y
z 0 —x

-y x 0

Now (26) is obtained by replacing as before a —mQ^, and (27) is obtained

by letting a —» oc.

Clearly the Lax pair (14) from Proposition 2.1 and (26), (28) are equivalent
in the sense that they define one and the same vector field. We can identify
them over C by making use of the isomorphism of the Lie algebras 50(3, C)
and 5 [(2, C) given by

If ex ez + ëy \
^7lU-ô>

Note, however, the following difference. The spectral curve of (26) is reducible

det X2x T AM + F — pi — n (p2 T /(A)) 0

/(A) A4 + 2(1 + m)h^)f + (2/Z3 + m(m + l)hf)X2 — 2/z2A + 1.

but the spectral curve of (14) is not

det (A(A) - 11I) fi2 -V2 - UW /i2 -/(A) 0.

The last observation will be of some importance for the next section. Earlier
Adler and van Moerbeke [1, p. 351] proposed to linearize the Lagrange top on

an elliptic curve by introducing first a small parameter e in the corresponding

50(3) Lax pair. The new system has the advantage of having an irreducible

genus 4 spectral curve Ce which fits the general theory, so we can just "take
the limit" e —» 0. This computation, reproduced in [21] and used in [22], is

however erroneous.

By abuse of notation we call the curve Ch {ß2 +/(A) 0} with an

antiholomorphic involution (A.ji) (A,/x), the spectral curve of the Lax

pair (26). The curve Ch is real isomorphic to the curve Ch {p2 =f(A)},
equipped with an antiholomorphic involution (A, p) (A, —p), so without
loss of generality we shall write Ch Ch.
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3. Explicit solutions

In this section we find explicit solutions for the Lagrange top (2). We

compute first the Baker-Akhiezer function of the 5[(2, C) (or rather su(2))
Lax pair (14). This implies explicit formulae for the solutions of the Lagrange

top in terms of exponentials and theta functions related to the spectral curve C/7

(see for example Dubrovin [8], E. D. Belokolos, A. I. Bobenko, V. Z. Enol'skiï,
A. R. Its, V. B. Matveev [5]).Then we note that the Jacobian /(C/7) of C/7 is

just the Lagrange elliptic curve used in the classical theory which provides

explicit solutions in terms of exponentials and sigma function related to 7(C/7).

By performing a unitary operation on the matrix (15) we may put its

leading term in diagonal form. Substituting a —mQ3 in (14) and using the

change of variables (25) we obtain the following Lax pair representation for
the Lagrange top (2)

(29) [A,5-2*4] =2i^+ [A,B] 0, -1L atJ at
where

A_AaA)_4n(f,A) A12(f,A)Wl OA 2

A-A('.A)-^2i(f)A) A22(r,A)J " f 0 +

(IT771)0,3 ef^i(zL)TeQ2(0\jv _f r3 fri(0Tcr2(0A
Veßi(0 + ë£h(t) -(m+l)Q3 J ~{erl(t)+ëF2(t) -T3 J

and

BBit, A)
1°)+( eÖ!(0 + eQ2(0A

V° -1/ VeßiW+«ß2(0 -ß3 y
The spectral curve of the above Lax representation is defined by

C,7 {det(A(A) - fil)/j2 -/(A) 0}

/(A) A4 + 2(1 + m) h4X3+ (2A3 + + 1) hf) A2 - 2h2X + 1.

We shall also denote by Ch the Riemann surface of the compactified âffine
curve Ch. The reader may note the "similarity" between (29) and the Lax
pair of the nonlinear Schrödinger equation (for a rigorous statement see
Proposition 5.1).

3.1 The Baker-Akhiezer function
Let us fix a solution A(r, A) of (29) defined in a neighbourhood of

t 0 C. We shall also suppose that the point P (A,ß) is such that
(1,-1) is not an eigenvector of the matrix A(0, A).
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PROPOSITION 3.1. For any I G C in a sufficiently small neighbourhood
of the origin, there exists a unique eigenfunction

(30) T 4^P)=(^|^,
of A(t, A) (called the Baker-Akhiezer function) satisfying the conditions

(31)
dt

(32) A(t,\mt,P) ^(tffi)
and normalized by

(33) ^'(0, P)+ *P2(0, P)=\.
In terms of the coefficients Äfft, X) of the matrix A (Ay) we have

(34) 4>'(0 P)
Al2(0'A) E Ä22(0'A)

^12(0, X) + 11 — An(0, A) A2i(0, A) T- /i — A22(0, A)

(35) 4>2(0, P)
M~Au(°'A) Azi(0'A)

Ai2(0, A) + ß — An(0, A) A21 (0. A) + ß — A22(0, A)

Proof Let 0(/\ A) be a fundamental matrix for the operator B{t, A) — 2i~
normalized at t 0. Then the general solution of (31) is written as

(36) 4'(r, P)0(r, AmO, F), 0(0, A) (J ^ (A, p)

As A and B — 2ijt commute, we have

(ß(t, A) - 2/A) A(t, A)0(t, A) A(r, A) A) - 2i-|) Ou. A) 0

and hence A(t, A)<D(t, A) 0(t, X)M(P) for some constant matrix M(P)
computed by substituting t 0. Thus M(P) A(0, A) and

A(0, A) O"1 it,AA) 0(t, A).

The constants ^(O, P), yV2(0, P) are uniquely defined by (32) and (33). Finally,

A(t,Ay¥(t, P) 0(t, A) A(0, A) O"1^, A) O(/, A) ¥(0, P)

<SXt,X)-n-V(0,P)

^(t,p).
The formulae (34), (35) follow from (32), (33).

Denote by oo+ (respectively oo~ the point on C/, — ("/. such that in its

neighbourhood /u/A2 ~ +1 (resp. (—1)).
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PROPOSITION 3.2. There exists to > 0 such that for any fixed t £ C,

|f| < to, the Baker-Akhiezer vector-junction ^(t.P) is meromorphic in P on
the affine curve Ch and has two poles at P1.P2 C/7 which do not depend

on t. In a neighbourhood of the two infinite points oc± on Ch we have

(l ~b 0(X
1

exp — (A + Q3)?). P —» oc~*~

(37) ^(r,P)

(38) x¥2(t,P)

2

0(A_1)exp(+^(A + Q3)r). P oc~

0(A_1)exp(—^(A + Q3)r). P —> oc+

(l + 0(A)-1) exp(-h^(A + n3)r). P -> oc~

where i= Moreover, x¥l(t.P) (T2((P)) has exactly one zero on Ch

and the refined asymptotic estimates of XP1 at oc~ and of XP2 at oc+ read

£ ^1 (0")"£ ^2(0
(39) T1(r,P)

2A

(40) vP2(f.P)= (f-—(9(^-2) exp(-2(A+T>3)r), P^oc+.

Proof. According to (32), (VP1.VP2) e Ker(A - and hence

^"(0 P)
_ P— A2 — (1 + m)£23A + r3(r)
vHt-.P)~(ê Qi(t)+ e n2(o) a - ë ri + 6 r2(r)

'

If P -+ oc+ then ß -A2 - (1 + m)Q3A ~ 0(1) and using (29), (31), (32)
and (41) we compute

2'A A + £23 + (ëQi(r) + eQ2(0) vpi|f pj A + Q3 + 0(A_1)

and hence

^\t. P)(l + 0(A_1) exp(—j(A + Q3)r).
In a similar way if P—> oc~ we obtain

,2(t-P)=(l + 0(A-1)) exp(+j(A + Q3)f)

To compute the remaining asymptotic estimates we use that if -+ cc" then

(47) ^ VP)_An(t, A)
_ eQi(t) + eQ2(t)

>F2(r,/>) ß—Aiiit,A)~~ TÄ +0(A ")

and if P —> oc+ then

+ 0(A~2) exp(+j(A+f23)r). P^oc'
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A2l(t,X) _ eClM + ëChit)
(43)

2Ä +0(A }-

To find the poles of Tfiï, P) in P we note that according to the proof of
Proposition 3.1 (and with the same notations) we have

(44) ¥(*, P) O(r, Amo, P), 0(0, X) h -

If |l| is sufficiently small, the fundamental matrix 0(r, A) has no poles and

det 0(t, A) 7^ 0. It follows that the poles of <?(£, A) and 0(0, A) coincide, and

we can obtain them by solving the following quadratic equation

detA(0, A) (An(0,A)-Ai2(0,A))2 M2

(see (29, (34)). One gets two time independent poles Pi,P2 Ch of Tfiï, P)-

Finally, the meromorphic one-form Jin1?1 has a simple pole at oo~ with
residue +1 and is holomorphic in a neighbourhood of oo+. On the other
hand ^(f,P) has exactly two poles on Ch and hence it has one zero on Ch-

The same arguments hold for T*2^, P).

Let A\)A2-)B\ be a basis of H\(Ch- Z) as shown in Figure 2 (A\ oB\ 1),
and let uq, uoi be a basis of #°(C, 01(oo+ + oo-)), normalized by the

conditions
' 2iri 0

M

UJI
1

v.. V o 2
7 ixZ—1,2

We shall also suppose that toi is a holomorphic form on the elliptic curve
Ch. Define now the period matrix

n -
where

27ri 0 T\

0 27ri T2

n / Wi, r2 / UJ2, Re(n)<0.
JBi JB\

Recall that the generalized Jacobian /(C/Î;cx)±) of Ch relative to the modulus

m oo+-boo_ is identified with C2/A where A is the lattice in C2 generated

by the columns of II. Let

oo

On(z) 0n(zf ri) Y exy{\n(n+\f + (z +zG C

n= — oo

be the Jacobi theta function with characteristics [A, |],
6*11(0) 0, 6*ii (z + 27Tt) -6*ii(z), 6*n(z +ri) =-exp(—z - jT]) 0n(z)-
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Denote by Q the unique Abelian differential of second kind on Ch with

poles at oo±, principal parts where P (A,/i), i yf—T, and

normalized by fA^ Q 0. Let Po G C/7 be a fixed initial point, c U be the

constants defined by

(45)

1

\ p oo+-^A + C-AOCA-1), P

a u.

^ t.Pr j rv\~h p _^ ßl

2
+ -A + c+ + 0(A P —> oo

EC A-

/ ^1 •

g,

Define the Abel-Jacobi map

A: Div°(Cft) -> J(Ch) :IPP~Qi
Here, and henceforth, we make the convention that the paths of integration

between divisors are taken within C/7 cut along its homology basis A\, B\,
which we assume does not contain points of these divisors.

PROPOSITION 3.3. The Baker-Akhiezer function is explicitly given by

P n #11 (^4(P+00 —P\—P2)JrtU^j
u-c -2^3; - -

Po

(46) xF1(r,P) consti • exp[*(/ Q-c -jk23
L JPo

(47) x¥2(t,P) const2 • exp[t( f +

On (A(oo+ + oo" -Pi —P2) + tU)

On (Al(P+oo+ -Pi-Pi)+tU)
On (A(oo+ + oo~ -Pi-P2)+tU)

const2

>Po

where

6n{A{P~oo")) flu (.A(oo+
C°nStl " 011(Aoo+ -oo-))

' 9n(AP,))'

9n(A(P-œ+)) 9u(A(œ))0„(Aoo" -
9n(A(oo- - 00+))

'

0u(MP - Pi))
'

0n(A(P - P2))

and Pi, P2 arg the poles of XF.

The proof of the above proposition is based on a general fact : the properties
of enumerated in Proposition 3.2 define it uniquely. Indeed, if and T*

are vector functions both satisfying the assumptions of Proposition 3.2, then

the functions VF1 and T*1 (resp. T72 and XP2) meromorphic on C/7 have the

same poles. Using this and the asymptotic estimates at infinity we conclude
that T'1/^1 and 2/xP2 are meromorphic functions on C/7 which have one

pole (at T" 0). Moreover

Vi(t,oo-)/Vi(t,oo-)= 1, V2(t,oo-)/Vi(t,oo-)=l
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and hence TL Finally, the reader may check that the functions (46)
and (47) have the analyticity properties from Proposition 3.2 and hence they
coincide with the Baker-Akhiezer function defined in Proposition 3.1.

3.2 Solutions of the Lagrange top

Let z (z\,zi) £ /(C/aoct^). It is easy to check that the functions

6>n(zi ±t2) TZ2

On(zi)

live on J(C/,; oo^).Weshall see that they give solutions of the Lagrange top.

By (16) we compute that £z constant, where

* _ fvA_ o_.V L T v \

SO

dX r dX \ -i
— ?7T7 jAl P ^A2 P

\ X J A1 ß JÄ2 ß

f d\ „ f XdX
/ 0 / —27Tl

Ja2 ß Ja2 ß

^A,d^ (-Uv^ + aU

—az

dX)a •

A, M
1 "'JA, M

THEOREM 3.4. The following equations hold

?ll(zt
(48) ei2i(t) + e£22(t) constß

0n(zi)

(49) e Qi (0 + ?^2(0 const4 e+Z2
Ou(zi)

where

(50)

and

const3 -

const4

Z2 — tV2 7 Z\ — tV\ + .4(oO+ + OO — Pi — Pf)-)

T2 A(00+ — GO") UJ2
JB\

2iV,0n(O) On(4(.x ' - PO) t'nMix- - P2))

0n(4(oo" -00+)) On(4(oo"-P,))0„(4(oo--^2))'
2/ Li 0U(O) 011 (.A(oo- - Pi)) 011 (4(oo- - P2))

0,i (4(oo+ - 00-))
'

0,, (4(oo+ -Pi))
'

0,1 (4(oo+ - P2))
'
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Let us denote

Wi -- ±(w? + 0(A"I))rf(A-1), ,p) -> oo*,

w2 ±(w2A + w? + 0(A-1)) rf(A_1), P (A, /i) oo±

To prove Theorem 3.4 we shall need the following

LEMMA 3.5. The above defined differentials are such that

-i f Q -iVi ujI c= i(c+ - c~)•T

V% — —T c T iTl3. Xl(0O+ —00)= UJ2 •

JBi

Proof. The identity cjJ -z fß Q is a reciprocity law between the

differential of the first kind w\ and the differential of the second kind Q

[13]. It is obtained by integrating iï{P)u\ where ir(P) fp0&> along the

border of C/? cut along its homology basis A\, B\. On the other hand

„ / fdXcoi Irci / — ] —

and hence

/a, P J P

",v"
Similarly the identity - i(c+ — c~) is a reciprocity law between the

differential of the third kind oj2 and the differential of the second kind O,
and XI(og+ — oo_) fßi u2 is a reciprocity law between the differential
of the third kind uj2 and the differential of the first kind uo\. Finally, as

I f MS
w2 -pit f ~prwehave u2 - (1 + 3 - Q.3

Al u Al ß

and hence V2 — c+ + c~ + z'03.

Proof of Theorem 3.4. According to (42), (43)

ën,(f) + en2(0 "2 Hm
P— oo- T^P)

and

eOi(r) -F EQ.2(t) +2 lim ——- ' ^
P-> oo+ ^ft.P)
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lim \(P)6U GMP - œ+)) - eu{0) -p-*oo+ v J ds

To compute the limit we use (46), (47) and

lim \(P)dn{A(P-œ-)) ~0'n(0)4-f
P-^oo- V 7 ds s=0 7

aj .s-u J

(see Lemma 3.5).

3.3 Effectivization

Let p. C, cr be the Weierstrass functions related to the elliptic curve T
defined by

(51) T]2 4£3 - g2t; -
(we use the standard notations of [4]).

Consider also the real elliptic curve C with affine equation

(52) fj? T A4 T a\X^ T a^X^ 4- a$À T a4 — 0

and natural anti-holomorphic involution (A. fi) —» (A, /l), and put

(53) <72 <24 + 3 (^) ^1 ^3

4~T: 73 det

1 ai Û2

4 6
Ö] «2 û3
4 6 4

a2
6

«3
4 ^4

It is well known that the curves C and T are isomorphic over C and that

under this isomorphism

dX dt;

M V
(54)

Following Weil [25] we call T the Jacobian 7(C) of the elliptic curve C and

we write 7(C) T. Note that 7(C) and T are real isomorphic and that 7(C)
and C are not real isomorphic.

Further we make the substitution (23) and C becomes the spectral curve
Ch of Adler and van Moerbeke {/12 +/(A) 0}, where

/(A) A4 T 2(1 T jfi)h^X^ T (2/13 4- yyi{YYI 4" 1)^4) A2 — 2/12A 4~ 1

and T becomes the Lagrange curve T/2. Recall that, as we explained at

the end of Section 2, the curve Ch with an equation {/12 /(A)} and

antiholomorphic involution (A, ß) —>• (A, —/Z), is isomorphic over R to C/2,

so we write Ch Ch- The Jacobian curve 7(C/2) was computed by
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Lagrange [17], while Qt appeared first in [1, 21] as a spectral curve of a Lax

pair associated to the Lagrange top.
Recall that a{z) is an entire function in z related to Ç(z), p(z) and the

already defined function 6\\{z | t\) on Q as follows:

C (z) ~p(z) —r C(z) Tcr(z) az

OnizU) \z2U2e'{[m\
<55) "fe)=wwwexpi^«rr^Mo+
where U is a constant depending on g2 and g2. We shall also use the "addition
formula"

a(u + v) a(u - v)
p(v) - p(u).

az(u) o~(v)
To state our result let us introduce the notations

2x\ ~ cQi T c £12 2x2 c £2 j T 6 kl2 — \J— 1

(56) 2yi eXi +eT2, 2y2eTj + e3T2 r =-1
Pi —imkl3 p2 —/^3.

The system (2) is equivalent to

+P1X1 — yi y 1 —P2);i +^r3
(57) i:? — PiA'2 + y2 yi +P2);2 — Y2r3

pi p2 constants T3 2x\y2 - 2x2y{

with first integrals 70 4xiy2 - 2r3, Ix 4x{y2 + 4jc2Vi - 2(pL + p2)r3 and

h T\- 4yiy2.
Theorem 3.6. Thegeneral solution of the Lagrange top (2) can be written

in the form

*1 (0 - - xfxfxe"'+b - - e-a,-b
a if) cr(k + /) cr if) cr(k + /)

v <j_y-k)oy-yeaJ+b a(t + k) a{t + 0
a2(t) o(k) a(l)

3-(

r M - a(t+ ®a<d- cr(t+ I) o(t - 03(0 " aHk)aHt)
+ Ywr pW + p(0 +

Pi a—CCO - <(*) p2 -a- C(0 + 2C()fc +
where g2, g2, a, b,k,I are arbitrary constants subject to the relation
gl - 21g2 f0.
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Remark. The non-general solutions of the Lagrange top are obtained
from the above formulae by taking the limit g\ — 21 —> 0. The formulae
for the position of the body in space, and in particular for r3(f), yft), y2it),
are due to Jacobi [15]. The expressions for xft), x2(0 were first deduced by
Klein and Sommerfeld [16, p. 436]. Note however that in [16] the constant a,
and hence the invariant level set on which the solution lives, is not arbitrary.

Proof. To make the solutions of the Lagrange top effective we use
the following 4-dimensional Lie group of transformations preserving the

system (57):

X\-+ Uxxeat+b,x2 -* Ux2e~at-b, ^ +
(58) r/2 at+b TyL, sy—at—b y tj2 yy\ U y\e J2 L y2 } 13 — (7 13

Pi —> Upl + a, p2 > Up2 - a

where U / 0, T, a, b are constants.

The group (58) transforms x\ from (48) (see also (56), (55)), where

Z\ tU — TU, z\ — T2 (t — k — l)U as follows

x. (t) const
^"(Z1~T2) - eat+b

0\\(z\) cr(t) cr(k + /)

(we used the fact that 0\\{Z\-
is a constant). The variable A2 is computed in the same way.

If we define the constant k by the condition yft — k) 0, then the first

equation of (57) gives

yft) x\{t) a(t — k)h(t)
P 1 ~

xi(t) xi(t) a(t) ait — k — /)

where hit) is a meromorphic function on C, such that y\{t)/x\it) is single
valued with poles at t *= 0 and t k + /, and residues (—1) and (+1)
respectively. These three conditions define hit) uniquely:

_ ait - /) aik + /)
()~a(k'which implies the formula for yft). The expression for y2(0 is obtained in

the same way.
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To deduce an expression for T^(t) we use the fact that

r3(f) 2xix2 - \h -2 P+ 2 + o - 5A) •

The value of Iq is easily computed by using the third equation of (57) and

the formulae deduced for x\, y\. By substituting t k we obtain

r n\_ a(k - I) a(k +I)_^ ^3( }
a2(k)a2(l)~p() P( }

and in a similar way r3(/) p(&) - p(/). We conclude that

1*3(0 — ~~2p(0 + p(/) + p(&)

Finally, to compute pi,p2 we shall use once again (57). As yi(&) 0 we
have

x\ (k) d
Pi 777 — lnvi(0

xi (/c) r=*

— In a(t — k — I)
dt

a-ai)~ak).
In a quite similar way we obtain

d
~ 1+ln

t=k dt t=k
+ a

P2 -j'nyiol
t—k+l

-ö-CW-C(0 + 2C(^ + /).

Theorem 3.6 is proved.

Remark. If we impose the condition

ri + r2 + r3 r3 ~ 1
;

then

a(t + k)a(t-k)
t

a(t + l)a(t-l)\2
a2(k)a2(t) a2{l)a2{t) Ja2(t)a(k) a(l) <r(£)<t(/)

_
<?(t + k) a{t — k) a(t + a(t x 2

cx2(/c> <j2(r)

and hence p(k)-±1.

a2 (J) (pW- p(0) 1
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4. Real structures

Recall that a real algebraic variety is a pair (X, S) where X is a complex
algebraic variety and S : X —> X is an anti-holomorphic involution on it. The

set of fixed points of S is the real part of (X,S). S acts on the group of
divisors Div(X) : if D G Div(X) is defined locally by analytic functions fa,
then S(D) is defined by the analytic functions faoS. Thus it is natural to
define an involution 5* on the sheaf of analytic functions Ox

sr:r(s{U),Ox)-+r(u,ox)
This also induces an involution on the groups of one-forms and one-cycles.

If (J G #°(X, n1), c G H\(X, Z), then fcS*u JS(c) uj. A form uj is 5-real

if and only if S*cj uj and one may always choose a basis of S-real forms.

In the case when X Ch is the spectral curve of the Lagrange top, the

action of S on Div(X) induces an involution on J(C/7; oo±). This, however,
does not suffice to determine the real structure of the invariant manifold
Th ~ J(Ch\oo±) \ 4>~l(p) (Theorem 2.2), as it will also depend on the point

p G J(Ch). Recall that the symmetric product S2Cu is bi-rational to Th. Thus
the generalized Jacobian and the invariant manifold Th are identified by the

Abel map

rP\+Pi
(59) Gl'. iS2Ch —* J{Ch\ oo1'") Pi ~j- P2 1—* / o uj — (lü\ UJ2).

JWi+Wj

This induces an involution on 7(Q; oo±), z —> S(z), where

rP\+Pi rS(P\+P2)

z= cj 3 S(z) uj
Jwx+w2 JW1+W2

Of course this depends on the fixed points Wi, W2 G /(C^;^1^). Let o;i,u;2
be 5-real Then

nS(Wl + W2) rS(Pi+P2) rS(W]JrW2) f-P\+P2

5(z) UJ+ üü= LÜ+ UJ 5(0) + 2.
Jw}+w2 Js(Wi+W2) JW]+W2 Jwl+w2

If 5 has a fixed point on /(C/goc^) (this does not depend on W\, W2) then

one may always choose it for origin, and hence S(z) z becomes a group
homomorphism.

Denote by S the anti-holomorphic involution on the spectral curve C/7

defined by 5(À,/x) (À, —JL). This involution comes from the real Lax pair
of Adler and van Moerbeke defined in Section 2. We shall also suppose that

the real polynomial /(A) has distinct roots. S induces an involution on the
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usual Jacobian J(Ch) which we also denote by S, and an involution on the

generalized Jacobian 7(C/?; oc^) which we denote by If we use (59),

then in terms of the Jacobi polynomials U,V,W, it is given by

5+: (t/,y, w) ^ (t7,-y, W).

There is another natural anti-holomorphic involution on Tj7 given by the usual

complex conjugation

("•.!';) • • (12:. I',),
which we denote by S~. In terms of the Jacobi polynomials (12) it is

: (u, y, w) ^ (w, y, U).

Proposition 4.1. The holomorphic involution S+ o S~ S~ o 5+ on

7(C/7; oo±) A a translation on the half-period where 0(^A2) 0 G J(C/7)

(see (7), (9)).

The proof of the above Proposition will be given later in this section. If
f is the projection homomorphism defined in (7), then it implies

f o f o S~ — S of.
In other words the anti-holomorphic involutions and S~ "look alike" in
the same way on the usual Jacobian 7(Q) and differ in a half-period in the

"vertical" direction with respect to f on the generalized Jacobian 7(C/7;ogF).
An important feature of is that the -real part of the invariant level

set Th is preserved by the flow of (2). Indeed, changing the variables as

iQi —» iTl\ ^ ÇI2 —f- /T22
5 Ö3 —*

F1 —> iT\, r2 -> ;r2, T3 —» t3,
we obtain a new system

ôi —171TI2TI2 — r2, r2n3 — r3Q2,
(60) 0,2 — mf^3^i tFi, r? r^Qi — r1^3,

n3 0, r3 r2n{ - ta,
with first integrals

H\ -r? - L + rj,h2 -
H3 5 ~ ^~̂2*l~ (1 + 171)03)— F3 H4 Q3

The anti-holomorphic involution S+ in these coordinates is given again by
the complex conjugation.
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THEOREM 4.2. In each of the three connected subdomains of the complement

to the discriminant locus of /(A) the topological type of the real part
of the algebraic varieties (/(Q; oo^), 5,±) and (Tj21S±) is one and the same
and is given in the following table, where T2 S1 x Sl.

roots of f(A) no real roots two real roots four real roots

raz/ par? of (j(Ch", oo±), S+) T2 T2 T2 x (Z/2)

real part of (J(Ch\oo±), S~) T2 0 0

real part of (TRS+) S] x R 5'xR T2 U (51 x R)

real part of (7RS-) T2 0 0

Remark. It is easy to check that when the real invariant level set Tf of
the Lagrange top is non-empty, then the polynomial /(A) has no real roots. If
we do not use the generalized Jacobian /(C/goo^1), then it might be difficult
to understand the relation between Tf (which has one connected component),
CR (which is empty) and i(C/?)R (which has two connected components) (cf.
[2], [3, p. 37]).

Proof of Proposition 4.1. We have S+a S~ : (£/, V, W) ^ (W, -V, U).
The involution (£/, V, W) i—» (£/, — V. W) is obviously induced by the elliptic
involution i: (A, p) (A, — p) on Ch so it is a reflexion. This means that if a

fixed point of i is taken for origin in J{Ch\ oc^) then i —identity. It remains

to prove that y : (C/, R, W) i—> (W, V, £/) is a reflexion too. The involution j
has the following simple geometrical interpretation. Let Pi, P2 be two generic

points in the (X, p) plane and lying on the affine curve C/? {p2 =f(A)}. If
R(A)} is the straight line through Pi and P2 then it intersects Ch in

four points Pi,P2,P3,P4 and then y(Pi + P2) P3 +P4. Indeed, if the zero
divisor of the Jacobi polynomial U(A) on Ch is Pi +P2 T- /(Pi) + /(P2), then

by (13) the zero divisor of W(A) is P3 +P4 + /(P3) + /(P4) and the involution

Pi +P2 ^ P3 +P4 amounts to exchanging the roots of U{A) and V(A).
Let Wi, i — 1,..., 4 be the Weierstrass points on Ch. Then

and hence on J(Chi 00^ ~ Div°(C/z)/ we have Pj + P2 —P3 — P4 +
constant. This implies that j is a reflexion. Thus we have proved that S+ oS-
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is a translation (S+ oS")fr) z + a. Finally, a is easily computed. We have

i(Wk) Wk, j(W{ + W2) W3 + W4 and hence a Wx + W2 - W3 - W4.

Further if Ai, À2 are zeros of /(A), then (g) « W\ + W2 — W3 — W4, where

g(A) (A - Ai)(A - A2)//i. Moreover gioo^ ±1, g2(oo±) 1 and hence

This shows that a is a half-period and 0(0) 0 G /(Q).

Proof of Theorem 4.2. The proof will consist of two steps. First we
determine the action of S± on HfCh, Z) and hence on the period lattice A.
From that we deduce the first two lines of the table. Second, we determine the

action of S± : D00 on the infinity divisor Doo C2 /A2 ^ C*

and then we use that

real part of (Th,S±) real part of (J(C/7; oc±), S,±) — real part of

It is easier to determine the action of S+ on A. Indeed, S+ is induced

by an anti-holomorphic involution on C/7, S+ : (A,/i) 1—> A, —/T Note that
S+ always has fixed points on /(C/7; oo^) : if Wi,W2 are two Weierstrass

points on C/7 such that either W\ — W2, or W\ and W2 are S+-real, then
S+(Wi + W2) — W\ + W2. On the other hand S~ has fixed points only
if /(A) has no real roots. Indeed, in this last case let Wif i 1,...,4,
be the Weierstrass points of Ch where W\ W2, W3 W4. Then
j(Wy + Wf) W2 + W4 (see the proof of Proposition 4.1) and hence

S-(Wi + W3) W\ + W3. On the other hand if U — W and V V,
then

V2(A) + U(X)W(\)I V(A)|2 + I [/(A) I2 =/(A) >0 VA e R,

and hence /(A) has no real roots.

Suppose first that /(A) has no real roots and let us choose a basis A\,
B\, A2 of Hi(Ch,Z) as shown in Figure 2 and in Figure 3 overleaf.

Then S+(Ai) A\ ,S+(A-,A2 and it is easily seen that ,S'+(ßi j + B\
is homologous to A2 on Hi(Ch,Z). Thus in the basis the matrix
of the involution S+:H{(Ch,Z)- Hx(Ch, Z) takes the form

From this and the fact that J{Ch;ocT ,S'+ j is not empty we conclude that the
real part of (j(Ch;oo±),S+) is a torus with generators the periods JB u and

m m
Wi+W2-W3-W4~ 0 Wi+W2-W}-W4 / 0, ~ 0.
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Figure 3

Projection of the cycles A\, B\, A2, on the A-plane

JA2 uj. On the other hand the real part of (J(Ch\oo1^), S is also non-empty
and S+oS~ is a translation. We conclude that the real part of (/(C/A oo^), S~)
is just a translation of the real part of (7(Caoo^1), S+) and in particular it is

generated by the same periods.

In a similar way we find the real part of (J(Q; cx)±), S+) in the remaining
cases. Note that in an appropriate Z basis of H\(Ch,Z) the matrix of the

involution S± : //i(C/j,Z) —>• //i(CA,Z) takes the same form if /(À) has two
real roots, and it is of the form

if /(A) has four real roots. This implies the first two lines of the table.

Let us determine now the real part of (DOQ,S±). As D00 C*/À2 then

we have to compute S±(A2). Note that, as the real invariant manifold Th is

compact, then (Z)oo, S~) is always empty. On the other hand (£>oo, S+) is never

empty. Indeed, if S+(A,/i) (A, —ß) then for Q ë Ch the point Q + S+(Q)
is 5+-real on J(C/A cx)±). As 5+(cx)+) oo~ we see that an 5+-real point
of (j)~x{p) is obtained by taking the limit Q ^ oo+ in S+(ß) + Q along an

appropriate real analytic curve on Ch- Finally, from the computation of the

action of S+ on A we get S+(A2) A2 which shows that the 5+-real part
of (0_1(p),5+) is always a circle R/A2. This gives the last two lines in the

table.
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5. The Lagrange top and the non-linear Schrödinger equation

Our final remark concerns a previously unknown relation between the real

solutions of the Lagrange top and the one-gap solutions of the nonlinear

Schrödinger equation

(NLS± Uxt ±2\u\'u

In the physical applications both forms of {NLS) are of interest. Comparing
Theorem 2.2 to the results of Previato [20] we note that the invariant manifolds

of one-gap solutions of the NLS equation are isomorphic to the invariant

manifolds of the Lagrange top. This relation can be made explicit if we

compare the expressions for the solutions found in Theorem 3.4 to the well
known formulae for u(x. t) (cf. [5. 20]). We shall see that the S^-real solutions

of the Lagrange top give also one-gap solutions of NLS- equation. Recall

that, according to the preceding section, an -real solution is a usual real

solution of the Lagrange top (2). and that an S^-real solution is a real solution
of the system (60).

Let XE. Xq? be the Hamiltonian vector fields (2) and (3) respectively and

put

2; AE- 2 I(m _ DQ3X£ + 1

(2/,3 - (3/77 +

As and Jy define translation invariant vector fields on the generalized
Jacobian /(CV. oc111) then fixing an arbitrary point for origin we may introduce
(.v. t) coordinates on J{Ch: oc (and hence on the complex invariant manifold
T/j). If the real part Tf of Th is not empty, then we shall choose for origin
a real point. As the real vector fields J2 m(y JL are tangent to the Liouville
torus Tf. then (v. t) provide real affine coordinates on it. Denote, lastly, by
u~{x.t) the restriction of the function eLli +eQ.2 on the Liouville torus Tf
of the Lagrange top (2).

Similarly, let u~{x.t) be the restriction of the function eQ.[ TeLL on a
connected component of the S^-real part of J(Ch:oc±). If the origin belongs
to this component too. then as above we conclude that x.t G R.

Proposition 5.1. The functions iN{x.t) and u~(x.t) satisfy NLS+ and
NLS~ respectively.

The proof of the above Proposition is a straightforward computation
(compare with [20], Theorem 2.2). From the definition of u± we get
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u — e Q2 + ßi and u+ — —e ß2 — e Qi. It follows that | m± |2 =F(^i + ß2)
and it is easy to check that

u^ - iuf ± 2\u^ J2u±

is equivalent to the system

(Qj)« + (Û2)f ±2^(0? + 0|)
=±2Q2(£2? + fli)

where £2i,n2 are defined on the 5^-real part of Th respectively. Using (2)

we get for the derivatives along Xe

Qi + (m — 1)QSQ2 - —mQi^3 — Oil^

and as

T3=l2 (ß? ^2 (1 ~h m)Q%) — E,

then

Qi + (m - 1)^3^2 ~^ßi(ß2 + ß2) + ßi (^ - ^ß*) •

Finally, as Xq3H2 — Q.\ we conclude that

(ßi)xx + (^2)t —2Qi(Q^ + ÇI2)

(£22)„-{n1)r -2i22(n? + ni).

This proves also that is a solution of NLS+ (we just have to substitute

Qi /Qi, ^2 ^ ^2)- n
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Appendix : Linearization of the Lagrange top
ON AN ELLIPTIC CURVE

The purpose of the present Appendix is to give a brief account of some

"well known" facts concerning the linearization of the Lagrange top on an

elliptic curve. All algebraic varieties below come equipped with real structures.

We shall make the following convention. If the complex algebraic varieties

V\ and V2 are isomorphic over R, then we shall simply write V\ V2.

Further we shall suppose that the invariant complex level set

Th { (Q,D G C6 : Hy 1, H2 « h2 ,H3 *= h3, HA h4 }

of the Lagrange top (2) is smooth, and moreover h (h2,h2,h^) G R3.

Thus Th has a natural real structure, and if Tf is its real part we make the

assumption Tf ^ 0. Recall that to Th we associate the following smooth

algebraic curves:

(i) the Lagrange curve Th {rj2 4£3 — g2£ — g2} where g2 g2(h),

93 — 93(h) are given by (53) and (23). The polynomial 4£3 — g2Ç — g2 has

three real roots, so the curve r/? has two ovals. Denote by T/, the completed
curve F'/7.

(ii) the spectral curve Ch {ß2 + /(A) 0} of the Lax pair of
Adler and van Moerbeke (26), with the natural anti-holomorphic involution
(X,ß) (A,/I), where /(A) is given by (24). It is isomorphic over R
to the curve Ch {ß2 /(A)} with an anti-holomorphic involution
(A,/x) 1 ^ (X.—ß), so Ch Ch. The polynomial /(A) has two pairs of
complex conjugate roots.

(hi) the Jacobian J{Ch) Pic2(Ch) of Ch which is identified, via the
Euler-Weil map ([25]), to the Lagrange curve Th, so J(Cu) Th.

According to the context the curves Ch, Ch will be considered either as

affine, or as completed and normalized curves.

Recall also that the generalized Jacobian J(Ch\oo±) C2/A of the elliptic
curve Ch with two points identified is defined as an extension of J{Ch) by C*

0 iïE» c* -L J(ch-oo±)A ^ 0.

By Theorem 2.2 the invariant complex level set Th identifies with J{Ch\oo±)-
5 where cj) x(p), p 00 G Th, so we obtain the following exact

sequence
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Denote by Th the variety Th completed by the curve D0c, so Th J(C^ oo±).
It follows from Theorem 3.6 that a point t e J(Ch) is defined by F3(f) and

its derivative in t, and hence

(ß'-Th->rh: (Q,D ^ (77,0

C -|r3) 7? -^r3w -|(rlß2-r2Qi).
The map l in (61) defines a C*-action on Th which is just the action of the

linear complex flow of (3). The latter is obviously given by

q, ± iQ.2 w e±h(a,± iß2), (M3,r3) ^ (m3,r3)
(63) I »

r-j ± ;r2 ^ £^(13 ± /r2), ^ g c*

This C* -action is free and compatible with the projection map <f> so we have

a well defined quotient map

0: jyc* rh,

which is an isomorphism. It is obviously prolonged to the isomorphism

0: fA/C* -*fA.
As r3 is a first integral of (3), then the corresponding flow is projected on Fh

to the identity. According to Theorem 3.6 we have —2p(t) + constant,
and hence the flow of the Lagrange top is projected to a linear flow on the

Lagrange curve Th. The real part of Th is a torus Tf ~ Sj x Sj on which the

real flow of (3) defines a free circle action 3ft Sl compatible with 0. Tf
is compact and connected so is ct>(Tf). It follows that 4>(Tf) ^(rf/3ft) is

contained in the compact oval of the Lagrange curve Fh. In fact, (j) provides
an isomorphism between Tf /Tt and this oval. Indeed, the only thing we need

to check is that the pre-image of a point on this compact oval, under the map
(ß: Tf —> Th, is a single orbit of the system (3), that is to say.a circle. But
a point t on Th is determined by T^t) and jtF?>{t) T\Fl2 — T2Q]. This
combined with the first integrals amounts to fixing Fl3, F3, the lengths

the scalar product

and the vector product

ß? + rf + rfs

Fl j Fj T FI2F2

F ] FI2 — F2F!]

of the real vectors (£2j,£22), (F1.F2), which defines a circle. To sum up, we
have
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Theorem A.l (Lagrange linearization).

(i) 6: Th/C* — Tjj is an isomorphism..

(ii) (p: Th/C* —> F/7 is an isomorphism.

(iii) The image of the flow of (3) on F/7 is the identity, and that of (2) is

linear.

(iv) The map à provides an isomorphism between T^/5ft and the compact

oval of the affine real curve T.

The above theorem may be attributed to Lagrange [17, p. 254] who

computed the differential equation satisfied by the nutation T3(t). It worth

noting that this computation was published in 1813 (the year when Lagrange

died) by Poisson [19] as completely new, and without mentioning Lagrange.

There is another more sophisticated way to linearize the Lagrange top on

the elliptic curve Tj}, by making use of the Lax pair representation (26) (see

[1, 21, 24, 2, 3])

— A~x + ÀM — r) [ A~x + AM — F, Ay; + Q1
at
o _

Namely, let C/, be the affine curve C/; with its Weierstrass points removed

(they correspond to the roots of /(A)), and put A(A) A2x + AM — T.
o

As —p(p2 +/(A)) det(A(A) — pi), then for (X, p) G C/7 we have

dimKer (A(A) — /.J) 1. It follows that the variety

{(A,/i) G C, [vq,v\,V2\ G CP2 : (v0,vuv2) G Ker(A(A) — pi)} C Ch x CP2

is smooth and it is easy to check that its closure in {Cj7 U oo+ U oo-} x CP2

is also smooth, so we have a holomorphic line bundle on the compactified and
normalized curve {Ch U oo+ U oo-} (this also follows from [12, Proposition
2.2]). One computes further that the degree of this bundle is 4 and there is

always a meromorphic section with a pole divisor D R+-\-R_ +oo+ + oo~
Of course, the divisor D depends on the coefficients of the polynomial matrix
A(A), and hence on (0,T). Consider now the map

f: Th -> Pic2(C/7) J(Ch) r/7

(O, T) i—> [R+ + R_]

where the divisor R± (A(R±),p(R±)) G Ch is equal to

r -p or
^(R±) n; ->M^±) ±i - r3 + (1+ + A2(7?±))
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Note that, according to Theorem 3.6, the map f is prolonged to a holomorphic
map

4>-Tk-*Pic \ch)
We shall show that the map f provides a linearization of the Lagrange top
on Th. It is obvious that <fi is compatible with the C* action (63) on 7^, Th,
so we have the holomorphic maps

0: Th/C* - Th,<f>:fft/C* tfo 0"1 : f*
Remembering that Th is a complex torus, we conclude that if z G C/A ~ r^,
then (ß o cß~l(z) kz, for some k G Z, and hence f provides a linearization
on h too. The map f is a non-ramified covering of degree k2 and it is

easy to check that k2 4. Indeed, if R+ -f is linearly equivalent on
to oo+ + oo~, then R+ cr(R_), where cr{\p) — {X,—p) is the elliptic
involution. It follows that

Ti + iV2Ti- iV2^0_ d

which shows that the pre-image of the divisor class oo+ + oo~ on Th with

respect to fo<j)~l consists of the four Weierstrass points on Th - Finally, we
note that fi(Tf/^R), as before, is contained in an oval of IV In this case,

however, <fi provides a double non-ramified covering of Tf/dl to its image

- the oval of the curve Th Pic (Q) containing the point oo. Indeed, note
that the divisor class of oo+ + oo- represents a real point on Pic2(C/I). It
has exactly two real pre-images : the two Weirstrass points contained in the

compact oval of Th, and the remaining two Weirstrass points are not real.

Thus we have proved the following

Theorem A.2 (Linearization by making use of a Lax pair). Let Th be

the affine curve defined above, and

Th Th\ {(w,D e c6 : Q,r2 -ß2ri 0}.
Then

o

(i) (j)\ Th/C* —» Th is a non-ramified covering of degree 4.

(ii) fi: Th/C* Th is a non-ramified covering of degree 4.

(iii) The image of the flow of (3) on Th is the identity, and that of (2) is

linear.

(iv) The map f provides a double non-ramified covering of Tf/Ü to its

image - the oval of the compactified and normalized curve Th Th U oo

containing the point oo.
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Statement (iv) is due to M. Audin. In this form it appeared first in [2]

(Proposition 3.3.2) but the proof is not correct. Earlier Verdier [24] wrongly
claimed that the map 4> provides an isomorphism between Tf/R and its

image. Statement (iii) is a well known fact, though it does not seem to have

ever been rigorously proved. Thus Adler and van Moerbeke [1] and then Ratiu
and van Moerbeke [21] proposed a "proof" based on a general scheme for
linearizing the flow defined by a Lax pair with a spectral parameter (e.g. Adler
and van Moerbeke [1], Theorem 1, p. 337). The Lax pair (26) does not fit,
however, the general procedure, as its spectral curve is always reducible. Of
course this is only a minor technical difficulty as we may also use the Lax
pair (14). It was proposed in [1, p. 351] and [21] to consider, instead of the

Lax pair (26), another Lax pair

rlAe
(64) —— [Ae,B,at

where in the notation of [1] we have

(eh2ß iß*\
Ae =A\h)= -ß*-co 0

V iß0W J 1

[. ]+ means "polynomial part" and

ß y + hx, ym-L(7l - ij2),ß*=y + hx, j» (7j + il2),* ^(£21+iQ2)

iu> —zohh2 + h^h + 73.

To obtain our notations from those of [1], we just replace

H ~rf-, Zo I\ 1 I2 — 1 + m h X

For the spectral curve of Ae we obtain

(65)
det - zI)(e/l2 " z)fe2 - w") - lßß*z

-z3 + eh2z2+ (-2/5/3* + uj2)z - eh2u2 0.

This is generically a smooth irreducible genus 4 curve, so the Lax pair
(64) fits to Theorem 1, p. 337 in [1], Thus the flow of (64) linearizes on
Jac(Xe) and when e —» 0 it goes over into a linear flow on the compact piece
of Jac(X0) which is just the Lagrange elliptic curve. On the other hand the
differential equation (64) for e 0 is, modulo a linear change of the variables,
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the original system (2) which establishes once again Theorem A.2, (ii). It is

easy to see, however, that the above approach does not work as for e 0 the

Lax pair (64) does not define a differential equation. Indeed, note that (64)
is equivalent to the Lax pair

dA° eh fy
(66) - [AW~f U *73 0

0 -*73 /
Its (1,2) entry is computed to be

~y-*73 + -at I] i\
and the (3,1) entry is

dfi 1
\ êhy

l~77 T y13 "3 + -^73 - hzohy) + -7—at i\ 11

so y 0 and in a similar way y 0.

More generally, it is seen from the coefficients of the spectral curve Xe,
e 7^ 0, that the functions

Qj + 7? + 72 5 ^i7i + ^272 5 73 ^3

are invariants for any isospectral deformation of the matrix A. By continuity
these five functions are invariants for e 0 too, so the vector field in C6

obtained as e —> 0 is collinear to the linear vector field of (3). Of course
there is no analytic change of variables in C6 which sends the orbits of (3)

to orbits of (2).
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