
Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 44 (1998)

Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: THREE DISTANCE THEOREMS AND COMBINATORICS ON WORDS

Autor: Alessandri, Pascal / Berthé, Valérie

Bibliographie

DOI: https://doi.org/10.5169/seals-63900

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 15.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-63900
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


THREE DISTANCE THEOREMS 129

Proof. Let us consider a coding of the rotation by angle a under the left-

closed and right-open partition of the unit circle bounded by all the points of
the form {na + 7/}, for 0 < n < 77 and 1 < i < d ; let /3o, • • •, ßP-i denote

these consecutive points. The letter associated with the interval 4 [ßk, ßk+1 [

has a unique right extension, except when 4 contains points of the form

{ßi — a}. Suppose there are q> 2 points of this form; the associated letter

has q+ 1 right extensions. Since there are at most d points of this type, we

obtain p{2) — p( 1) < d. We deduce from Theorem 6 that there are at most

3d different frequencies for the letters of the coding, i.e., there are at most

3d different lengths for the intervals 4-

Remark. The start and finish intervals as introduced by Liang in his

proof in [37] correspond exactly to the beginning of the branches in the graph
of words. Indeed, Liang shows that any interval is associated either with a start

point {7/} (i.e., with one extension of a factor having more than one right
extension) or with a finish point {(77 — l)a + 7,•} (i.e., with a factor having
more than one left extension). Counting the finish and start points defined
in [37] (there are 3d such points) is equivalent to counting the number of
branches in the graph of words.

As in the remark of the previous section, we can consider a coding of the
rotation by irrational angle 1 — a under the partition {[71,72 [,..., [7^, 71 [}.
For such a coding, the 3d distance theorem can be rephrased as follows.

THEOREM 20. The frequencies of the factors of given length n > 7r(1) of
a coding of a rotation by irrational angle under a partition in d intervals
take at most 3d values, where ;?(1) denotes the connectedness index.
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