Zeitschrift:	L'Enseignement Mathématique
Herausgeber:	Commission Internationale de l'Enseignement Mathématique
Band:	44 (1998)
Heft:	1-2: L'ENSEIGNEMENT MATHÉMATIQUE
Artikel:	THREE DISTANCE THEOREMS AND COMBINATORICS ON WORDS
Autor:	Alessandri, Pascal / Berthé, Valérie
Kapitel:	8. The 3d distance theorem
DOI:	https://doi.org/10.5169/seals-63900

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. <u>Mehr erfahren</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. <u>En savoir plus</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. <u>Find out more</u>

Download PDF: 06.08.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

7.2 APPLICATION TO BINARY CODINGS

A more natural coding of the rotation R would have been with respect to the partition $[0, \beta[, [\beta, 1[$. The points $\{0\}, \{\beta\}, \{\alpha\}, \{\beta + \alpha\}, \dots, \{n\alpha\}, \{\beta + n\alpha\}$ are the endpoints of the sets $I(w_1, \dots, w_n)$, following the notation of Section 2. But these sets might not be connected. Thus the frequencies of factors of length n are the sums of the lengths of the connected components of the sets $I(w_1, \dots, w_n)$. Despite this disadvantage, this coding allows us to deduce the following result from Lemma 3.

THEOREM 19. Let u be a coding of an irrational rotation with respect to the partition into two intervals $\{[0, \beta[, [\beta, 1[]\}, where 0 < \beta < 1. Let n^{(1)} denote the connectedness index of u. The frequencies of factors of given$ $length <math>n \ge n^{(1)}$ of u take at most 5 values. Furthermore, the set of factors of u is stable by mirror image, i.e., if the word $a_1 \cdots a_n$ is a factor of the sequence u, then $a_n \cdots a_1$ is also a factor and furthermore, both words have the same frequency.

Proof. It remains to prove the part of this theorem concerning the stability by mirror image. Assume we are given a fixed positive integer n. Let s_n be the reflection of the circle defined by $s_n: x \to \{\beta - (n-1)\alpha - x\}$. We have $s_n(R^{-k}(I_j)) = R^{(-n+1+k)}(I_j)$, for j = 0, 1, following the previous notation. The image of $I(w_1, \ldots, w_n)$ by s_n is $I(w_n, \ldots, w_1)$; they thus have the same length, which gives the result.

REMARK. A study of the topology of the graph of words for a binary coding of an irrational rotation of complexity satisfying ultimately p(n+1) - p(n) = 2 can be found in [24] or in [46].

8. The 3d distance theorem

Following the idea of the above proof, let us give a combinatorial proof of the 3d distance theorem.

THE 3d DISTANCE THEOREM. Assume we are given $0 < \alpha < 1$ irrational, $\gamma_1, \ldots, \gamma_d$ real numbers and n_1, \ldots, n_d positive integers. The points $\{n\alpha + \gamma_i\}$, for $0 \le n < n_i$ and $1 \le i \le d$, partition the unit circle into at most $n_1 + \cdots + n_d$ intervals, having at most 3d different lengths. *Proof.* Let us consider a coding of the rotation by angle α under the leftclosed and right-open partition of the unit circle bounded by all the points of the form $\{n\alpha + \gamma_i\}$, for $0 \le n < n_i$ and $1 \le i \le d$; let $\beta_0, \ldots, \beta_{p-1}$ denote these consecutive points. The letter associated with the interval $I_k = [\beta_k, \beta_{k+1}]$ has a unique right extension, except when I_k contains points of the form $\{\beta_i - \alpha\}$. Suppose there are $q \ge 2$ points of this form; the associated letter has q + 1 right extensions. Since there are at most d points of this type, we obtain $p(2) - p(1) \le d$. We deduce from Theorem 6 that there are at most 3d different frequencies for the letters of the coding, i.e., there are at most 3d different lengths for the intervals I_k .

REMARK. The start and finish intervals as introduced by Liang in his proof in [37] correspond exactly to the beginning of the branches in the graph of words. Indeed, Liang shows that any interval is associated either with a start point $\{\gamma_i\}$ (i.e., with one extension of a factor having more than one right extension) or with a finish point $\{(n_i - 1)\alpha + \gamma_i\}$ (i.e., with a factor having more than one left extension). Counting the finish and start points defined in [37] (there are 3*d* such points) is equivalent to counting the number of branches in the graph of words.

As in the remark of the previous section, we can consider a coding of the rotation by irrational angle $1 - \alpha$ under the partition $\{[\gamma_1, \gamma_2[, \dots, [\gamma_d, \gamma_1[]\}, For such a coding, the 3d distance theorem can be rephrased as follows.$

THEOREM 20. The frequencies of the factors of given length $n \ge n^{(1)}$ of a coding of a rotation by irrational angle under a partition in d intervals take at most 3d values, where $n^{(1)}$ denotes the connectedness index.

ACKNOWLEDGEMENTS. We would like to thank Arnoux, Berstel, Daudé, Dumont, Liardet and Shallit for their bibliographic help. Furthermore, we are greatly indebted to Allouche for his many useful comments and to Ferenczi and Jenkinson who read carefully a previous version of this paper.

REFERENCES

- [1] ALESSANDRI, P. Codages de rotations et basses complexités. Université Aix-Marseille II. Thèse, 1996.
- [2] ALLOUCHE, J.-P. Sur la complexité des suites infinies. Bull. Belg. Math. Soc. Simon Stevin 1 (1994), 133–143.