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6 N. SEDRAKIAN AND J. STEINIG

By (10), (11) and Lemma 1,

(12) qIm
Suppose now that (8) does not hold. Then (m, q — 1) — for some /,

Pi
1 < i < s, whence by (12),

(13) q I mm'Pi - 1

and therefore

Mm _ 1 Pi~ 1

<14)

is=0

But (14) is impossible, for with (9) it implies that Pi q, contradicting the

fact that q does not divide m. This concludes the proof of the theorem.

Remark. Several elementary proofs of this special case of Dirichlet's
theorem are known; see [1], [2, §11.3], [4, §48], [5], [6], [7, §6.1A], [8,

Ch. 6,5], [9], [10] and the references in [7, pp. 241-245]. They involve, more

or less explicitly, the cyclotomic polynomials, say Ow(x). Although the proof
we have given here does not require any knowledge of these polynomials,
the integer N defined in (7) is in fact equal to Om(ra), as can be seen with
Lemmas 1 and 2 and the identity [2, p. 181]

*»(*) IK*"7' -
d\n

where p is the Möbius function (see also [4], §46).
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