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frequencies of binary codings : the frequencies of the factors of given length

of a coding of an irrational rotation with respect to a partition in two intervals

take ultimately at most 5 values.

6.3 The 3d distance theorem

Let us consider another generalization of the three distance theorem, known

as the 3d distance theorem. This result, conjectured by Graham (see [17] and

[34]), was first proved by Chung and Graham in [18] and secondly by Liang

who gave a very nice proof in [37]. Geelen and Simpson remark in [29] that

their proof uses ideas from Liang's proof.

THE 3d DISTANCE THEOREM. Assume we are given 0 < a < 1

irrational, 71,.. „ f % real numbers and n\,..., nd positive integers. The points

{na + 7;}, for 0 < n < n{ and 1 < i < d, partition the unit circle into at

most n j + • • • T- n(\ intervals, having at most 3d different lengths.

We will give a combinatorial proof of this result in Section 8 and express
the corresponding result for frequencies of codings of rotations, i.e., that the

frequencies of the factors of given length of a coding of a rotation by the

unit circle under a partition in d intervals take ultimately at most 3d values.

6.4 Other generalizations

Slater has studied in [50] the following generalization of the three gap
theorem, which should be compared with Theorem 13 : there is a bounded
number of gaps between the successive values of the integers n such that

{77(71,..., rjd)} £ C, where C is a closed convex region on the d-dimensional
torus and where 1, % rjd are rationally independent. However, Fraenkel
and Holzman prove Theorem 13 even in the case where a\, 07 and 1 are

rationally independent.

Chevallier studies in [16] a d-generalization of the three distance theorem
to Td, where intervals are replaced by Voronoï cells : the number of Voronoï
cells (up to isometries) is shown to be connected to the number of sides of
a Voronoï cell. The notion of continued fraction expansion is generalized by
properties of best approximation.

Finally, note the unsolved problems quoted in [29] concerning further
generalizations of the three distance theorem. For instance, an upper bound
for the number of distinct lengths in the partition of the unit circle by the points
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k\a\ + H VkdOid, for kt < n; — 1 and 1 < i < d m conjectured to be

of the form q + nf=/ ni-> whore cci is a constant independent of n\,. rid •

7. Frequencies of factors for binary codings of rotations

We will prove in this section the following result, which corresponds to
the case min {«1,^2} 2 in Theorem 14. The idea of using a reflection of
the unit circle can also be found in the original proof in [29].

THEOREM 18. Let a be an irrational number in ]0. 3 [, ß fi 0 a

real number and n a non-zero integer The set of points {0}.{/3},{a},
{ß + M {na} {ß + na] divides the circle into a finite number of
intervals, whose lengths take at most five values.

7.1 A COMBINATORIAL PROOF

We will prove Theorem 18 by introducing a coding of the rotation by
angle a with respect to the intervals of the unit circle bounded by the points

{0} : {ß} : {/3 + a} {na} {ß + na].
Let a be an irrational number, ß a non-zero real number and n an

integer. Let /],.... Ip denote the intervals of the unit circle bounded by the

points {0} {ß} {a} {ß + a} {na} : {ß + na] Let u (un)ne^ be

the sequence defined on the alphabet Z {a\,..., ap} as the coding of the

orbit of 0 under the rotation R of angle a under the partition {/],.... Ip} :

un ak 4=^ {na} G 4 •

The frequency of the letter ak in the sequence u is equal to the length of the

interval 4, by uniform distribution of the sequence ({uo})weN.'We must now

prove that the frequencies of the letters of u take at most five values. Let us

consider the graph F1 of words of u of length 1. There is one edge from ak

to ak> if h' is the image of 4 by the rotation R or if 4; contains {—a} or

{—a + ß}. Therefore the graph T1 contains p vertices (one for each letter)
and p + 2 edges : indeed, every vertex has only one leaving edge, except the

ones associated with the intervals containing {—a} or {n — a + ß}, which
have two leaving edges (if both of these points belong to the same interval

4, then ak has three leaving edges and all the other intervals have only one

edge). In other words, we have p(\) p and p(2) p+ 2. As in the proof of
Theorem 6, this implies that there are at most 6 branches in Ti : indeed, each
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