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Fraenkel and Holzman show furthermore that this bound is achievable and
that the number of gaps can be made arbitrarily large, when at least one of
the moduli is rational.

6.2 COMBINATORIAL APPLICATIONS

Now let us review some applications of Theorems 13 and 14. For instance
we can deduce the following result for the intersection of two Sturmian
sequences.

THEOREM 16. Let s = (Sy)nenN and t = (t,)neN be two Sturmian sequences.
The number of gaps between the successive integers n such that s, = t, is
finite.

Proof. Let s = (Sp)uen and t = (f,),en be two Sturmian sequences of
angles o and (3, with corresponding partitions {ly,I;} and {Jy,J;}. The
gaps between the integers n such that the points {(na,nf3)} in T? belong '
to the rectangle Iy x Jy (respectively, I; x Ji) take a finite number of values,
hence so do the gaps between the successive integers n such that the points
{(na, nB)} in T? belong to the set Iy X Jo U I x Jy.

We also deduce from Theorem 14 and Lemma 3 the following

THEOREM 17. Let u be a coding of the irrational rotation by angle
0 < a < 1 with respect to a partition into d intervals of length 1/d. The
frequencies of factors of u of length n > sup {n(” ,d} take at most d + 3
values, where 'V denotes the connectedness index.

Proof. This result is a direct application of Lemma 3 and Theorem 14.
Indeed, the intervals I(wj,...,w,) (corresponding to the factors w - --w, of
length n) are bounded by the points

{il-w+j/d, 0<i<n-—1, 0<j<d—1}.

Vuillon has introduced in [57] two-dimensional generalizations of Sturmian
sequences obtained by considering the approximation of a plane of irrational
normal by square faces oriented along the three coordinates planes. Theorem
14 can also be applied to give an upper bound for the number of frequencies
of blocks of a given size for such double sequences (see [4]).

We will give in Section 7 a direct combinatorial proof of Theorem 14 in
the particular case min{n;,n,} = 2, and give an interpretation in terms of
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frequencies of binary codings: the frequencies of the factors of given length
of a coding of an irrational rotation with respect to a partition in two intervals
take ultimately at most 5 values.

6.3 THE 3d DISTANCE THEOREM

Let us consider another generalization of the three distance theorem, known
as the 3d distance theorem. This result, conjectured by Graham (see [17] and
[34]), was first proved by Chung and Graham in [18] and secondly by Liang
who gave a very nice proof in [37]. Geelen and Simpson remark in [29] that
their proof uses ideas from Liang’s proof.

THE 3d DISTANCE THEOREM. Assume we are given 0 < a < 1
irrational, 7, . ..,7vq real numbers and ny, ..., ng positive integers. The points
{na+y}, for 0 <n <mn and 1 <i < d, partition the unit circle into at
most ny + - -- + ny intervals, having at most 3d different lengths.

We will give a combinatorial proof of this result in Section 8 and express
the corresponding result for frequencies of codings of rotations, i.e., that the
frequencies of the factors of given length of a coding of a rotation by the
unit circle under a partition in d intervals take ultimately at most 3d values.

6.4 OTHER GENERALIZATIONS

Slater has studied in [50] the following generalization of the three gap
theorem, which should be compared with Theorem 13: there is a bounded
number of gaps between the successive values of the integers n such that
{n(n1,...,ma)} € C, where C is a closed convex region on the d-dimensional
torus and where 1,7;...,7, are rationally independent. However, Fraenkel
and Holzman prove Theorem 13 even in the case where «;, oy and 1 are
rationally independent.

Chevallier studies in [16] a d-generalization of the three distance theorem
to T¢, where intervals are replaced by Voronoi cells: the number of Voronoi
cells (up to isometries) is shown to be connected to the number of sides of
a Voronoi cell. The notion of continued fraction expansion is generalized by
properties of best approximation.

Finally, note the unsolved problems quoted in [29] concerning further
generalizations of the three distance theorem. For instance, an upper bound
for the number of distinct lengths in the partition of the unit circle by the points
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