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122 P. ALESSANDRI AND V. BERTHE

the form I(wy,...,w,) of length ¢, ; therefore, there exists a factor of u of
length [, — 2 + n which does not contain the factor w;j---w,. This shows
that ¢(n) > n—1+41,. The lemma is thus proved.

REMARK. Note that in the case of the Fibonacci sequence (o = */52_1 )s
the recurrence function satisfies, for Fy_; < n < F},

pomn)y=n—14 Fiy1,

where (F,),en denotes the Fibonacci sequence F,iy = F,+F,—1, with Fy =1
and F; = 2.

This result is extended in [13] to the fixed point of the substitution o
introduced by Rauzy which generalizes the Fibonacci substitution and is
defined by ¢(0) =01, (1) =02, ¢(2) = 0.

THEOREM 12. Let T, denote the so-called Tribonacci sequence defined
as follows: Tyy3 = Tpao + Tpay + Ty, with To = 0, Ty =0, T} = 1.
The recurrence function @ of the fixed point beginning with 0 of the Rauzy
substitution satisfies for any positive integer n:
k+1 k42

omn)=n—1+Trrg, where ZTi<n§ZTi.
0 0

6. HIGHER-DIMENSIONAL GENERALIZATIONS

6.1 TWO-DIMENSIONAL GENERALIZATIONS AND BEATTY SEQUENCES

Let us consider now some two-dimensional versions of the three distance
and three gap theorems. Such generalizations were introduced by Fraenkel and
Holzman in [26] in order to give an upper bound for the number of gaps in the
intersection of two Beatty sequences. They first reduce this problem to a two-
dimensional version of the three distance theorem, conjectured by Simpson
and Holzman and proved by Geelen and Simpson (see [29]). Then they deduce
from this theorem a bound for the number of gaps in the intersection of two
Beatty sequences, when at least one of the moduli is rational.

Let us first give the two-dimensional version of the three gap theorem
introduced by Fraenkel and Holzman. We will use the same notation as in
[26]: for any pair of real numbers (x,y), {(x,y)} means the equivalence class
of (x,y) mod Z?,ie., {(x,y)} belongs to the torus T?.
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THEOREM 13. Let «y, oo, B1, P2, i1 and pp be real numbers in
[0, 1[. The gaps between the successive values of the integers n such that the
following points of the torus T?

{(nay, nan)}

belong to the rectangle

R={{N}: 1 — B <x<p, po—Poa<y<pa}

take a finite number of values which depend only on oy, aa, B, and [3.

Furthermore, if at least one of the two angles «; and c is rational, then
the number of gaps is bounded by q + 3, where q is the minimum of the
denominators of o and oy in lowest terms (the denominator of an irrational
number is considered as +o0 ).

Let us state now the two-dimensional version of the three distance theorem
proved in [29] by Geelen and Simpson.

THEOREM 14. Assume we are given two real numbers «;, oy and two
positive integers ny, ny. The set of points

lioy +jay+p, 0<i<n —1,0<j<n—1}

partitions the unit circle into intervals having at most min{ny,ny} +3 lengths.

Note that the bound min{n;,n,} + 3 is not the best possible when n,
or n, = 1. Indeed, in this case, the statement reduces to the three distance
theorem. For a discussion on the achievability of the bound, the reader is
referred to [29].

Fraenkel and Holzman have proved in [26] that Theorems 13 and 14
together answer the question of the intersection of two Beatty sequences,
when at least one modulus is rational. We define a gap in the intersection
of two Beatty sequences to be a difference between two successive elements
of the intersection, and an index-gap to be the difference between the two
corresponding indices in the same Beatty sequence.

THEOREM 15. Let (|nay + p1nen and (|nag + pa|)nen be two Beatty
sequences, with at least one of the two moduli o, and o, rational. Let g
denote the minimum of the denominators of «; and oy in lowest terms (the
denominator of an irrational number is considered as +o00). The number of

gaps and index-gaps in the intersection is bounded by q+ 3, if ¢ > 2, and
bounded by 3 otherwise.
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Fraenkel and Holzman show furthermore that this bound is achievable and
that the number of gaps can be made arbitrarily large, when at least one of
the moduli is rational.

6.2 COMBINATORIAL APPLICATIONS

Now let us review some applications of Theorems 13 and 14. For instance
we can deduce the following result for the intersection of two Sturmian
sequences.

THEOREM 16. Let s = (Sy)nenN and t = (t,)neN be two Sturmian sequences.
The number of gaps between the successive integers n such that s, = t, is
finite.

Proof. Let s = (Sp)uen and t = (f,),en be two Sturmian sequences of
angles o and (3, with corresponding partitions {ly,I;} and {Jy,J;}. The
gaps between the integers n such that the points {(na,nf3)} in T? belong '
to the rectangle Iy x Jy (respectively, I; x Ji) take a finite number of values,
hence so do the gaps between the successive integers n such that the points
{(na, nB)} in T? belong to the set Iy X Jo U I x Jy.

We also deduce from Theorem 14 and Lemma 3 the following

THEOREM 17. Let u be a coding of the irrational rotation by angle
0 < a < 1 with respect to a partition into d intervals of length 1/d. The
frequencies of factors of u of length n > sup {n(” ,d} take at most d + 3
values, where 'V denotes the connectedness index.

Proof. This result is a direct application of Lemma 3 and Theorem 14.
Indeed, the intervals I(wj,...,w,) (corresponding to the factors w - --w, of
length n) are bounded by the points

{il-w+j/d, 0<i<n-—1, 0<j<d—1}.

Vuillon has introduced in [57] two-dimensional generalizations of Sturmian
sequences obtained by considering the approximation of a plane of irrational
normal by square faces oriented along the three coordinates planes. Theorem
14 can also be applied to give an upper bound for the number of frequencies
of blocks of a given size for such double sequences (see [4]).

We will give in Section 7 a direct combinatorial proof of Theorem 14 in
the particular case min{n;,n,} = 2, and give an interpretation in terms of
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frequencies of binary codings: the frequencies of the factors of given length
of a coding of an irrational rotation with respect to a partition in two intervals
take ultimately at most 5 values.

6.3 THE 3d DISTANCE THEOREM

Let us consider another generalization of the three distance theorem, known
as the 3d distance theorem. This result, conjectured by Graham (see [17] and
[34]), was first proved by Chung and Graham in [18] and secondly by Liang
who gave a very nice proof in [37]. Geelen and Simpson remark in [29] that
their proof uses ideas from Liang’s proof.

THE 3d DISTANCE THEOREM. Assume we are given 0 < a < 1
irrational, 7, . ..,7vq real numbers and ny, ..., ng positive integers. The points
{na+y}, for 0 <n <mn and 1 <i < d, partition the unit circle into at
most ny + - -- + ny intervals, having at most 3d different lengths.

We will give a combinatorial proof of this result in Section 8 and express
the corresponding result for frequencies of codings of rotations, i.e., that the
frequencies of the factors of given length of a coding of a rotation by the
unit circle under a partition in d intervals take ultimately at most 3d values.

6.4 OTHER GENERALIZATIONS

Slater has studied in [50] the following generalization of the three gap
theorem, which should be compared with Theorem 13: there is a bounded
number of gaps between the successive values of the integers n such that
{n(n1,...,ma)} € C, where C is a closed convex region on the d-dimensional
torus and where 1,7;...,7, are rationally independent. However, Fraenkel
and Holzman prove Theorem 13 even in the case where «;, oy and 1 are
rationally independent.

Chevallier studies in [16] a d-generalization of the three distance theorem
to T¢, where intervals are replaced by Voronoi cells: the number of Voronoi
cells (up to isometries) is shown to be connected to the number of sides of
a Voronoi cell. The notion of continued fraction expansion is generalized by
properties of best approximation.

Finally, note the unsolved problems quoted in [29] concerning further
generalizations of the three distance theorem. For instance, an upper bound
for the number of distinct lengths in the partition of the unit circle by the points
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kiog +kyar+ -+ kgay, for k; <mn;—1 and 1 <i<d is conjectured to be
of the form ¢, + HE:II n;, where c; is a constant independent of ny,...,n,.

7

7. FREQUENCIES OF FACTORS FOR BINARY CODINGS OF ROTATIONS

We will prove in this section the following result, which corresponds to
the case min{n;,n;} = 2 in Theorem 14. The idea of using a reflection of
the unit circle can also be found in the original proof in [29].

THEOREM 18. Let « be an irrational number in 10,1[, [ # 0 a
real number and n a non-zero integer. The set of points {0},{S},{a},
{B+a},....{na},{f+na} divides the circle into a finite number of
intervals, whose lengths take at most five values.

7.1 A COMBINATORIAL PROOF

We will prove Theorem 18 by introducing a coding of the rotation by
angle o with respect to the intervals of the unit circle bounded by the points
{0}, 48t Aa B+ a},....{na} {f +na}.

Let o« be an irrational number, 7 a non-zero real number and »n an
integer. Let I;,...,1, denote the intervals of the unit circle bounded by the
points {0}, {8}, {a}. {6+ a},...,{na} ,{f+na}. Let u = (u,)en be
the sequence defined on the alphabet £ = {a;,...,q,} as the coding of the
orbit of O under the rotation R of angle o« under the partition {/;,...,[,}:

Up = ar <= {na} €l.

The frequency of the letter @; in the sequence u is equal to the length of the
interval [, by uniform distribution of the sequence ({na}),en. We must now
prove that the frequencies of the letters of u take at most five values. Let us
consider the graph I'; of words of u of length 1. There is one edge from ay
to ay if Iy is the image of I, by the rotation R or if ;s contains {—a} or
{—a+ B}. Therefore the graph I'j contains p vertices (one for each letter)
and p + 2 edges: indeed, every vertex has only one leaving edge, except the
ones associated with the intervals containing {—a} or {n — a4+ S}, which
have two leaving edges (if both of these points belong to the same interval
I, then a; has three leaving edges and all the other intervals have only one
edge). In other words, we have p(1) = p and p(2) = p+2. As in the proof of
Theorem 6, this implies that there are at most 6 branches in I'; : indeed, each
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