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A PARTICULAR CASE OF

DIRICHLET'S THEOREM ON ARITHMETIC PROGRESSIONS

by Naïri Sedrakian and John Steinig

Dirichlet's theorem on primes in an arithmetic progression states that if a

and m are relatively prime integers, there exist infinitely many primes p such

that p a (mod m). We give here an elementary proof of the case in which

a 1.

We use the following notation. If x\,..., xr are positive integers, with

r > 2, (xi,..., xr) denotes their greatest common divisor and [jti,... xr]
their least common multiple. For r 1, we set (jci) := x\ and [x\] := x\.

The proof rests on three lemmas.

LEMMA 1. If m and ai,... ,ar are integers, with m > 1 and at > 1 for
1 < i < r, then

(1) (mûl - 1,... ,mar - 1) _ i

Proof The case r 1 is trivial. The case r 2 can be established by
computing (mfll - l,mû2 - 1) with the euclidean algorithm; the computation
runs parallel to that of One can then continue by induction, using
the associative property

(-U
5 • • • 5 -U) ((-M

5 • • • i -Xr— 1 -^r) •

(For a different proof of the case r 2, see [8], p. 26.)
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LEMMA 2. If x\.... ,xr are positive integers, then

n<*> n (xhXj,Xk)
i i<j<k(2) [xi,

Y[{Xi,Xj) JJ (Xi,Xj,Xk,Xt)
i<j i<j<k<l

where the numerator on the right hand side is the product of the gcd's of
X\.... .xr, taken n at a time for odd n 1,3,... ; the denominator is the

product of the gcd's of x\.... ,xr, taken n at a time for even n — 2,4,...
There are 2r~l factors in the numerator and 2r_1 — 1 in the denominator.

Proof. The case r 1 is trivial. For r 2, identity (2) is the familiar

r I XlX2
(3) [x\;X2] -

(xi. x2)

One can continue by induction, using (3) and the associative and distributive

properties
\X\. •« j Xr] — [[Xj, * Xr—i ] Xr]

respectively

([Xi7....Xr-\].Xr) [{

(Identity (2) is due to V.-A. Le Besgue ([3], pp. 51-53), whose proof
consists in showing that any prime divides both sides of (2) to the same

power.)

LEMMA 3. Let m be an integer, m > 1 ; let p\.....pr be distinct primes
which divide m. Then

(4) - I mn,/Pr 1] < - 1.

Proof. Since mm —1 is divisible by each integer m'"/p' 1 (f£= 1

it is divisible by their least common multiple. Hence (4) will be proved if we

can show that

(5) [mm/pi - 1,, mmlp' 1] 1

is impossible. To this end, we rewrite the left hand side of (5) by setting

Xi — mmlpi — 1 in Lemma 2, and then apply Lemma 1 to the gcd's which

occur. Since p\,.. * ,pr are distinct primes, we have

(Xi,.... ,Xit) - mm/pi• — 1 if 1 < i\ < • • • < it < r



DIRICHLET'S THEOREM ON ARITHMETIC PROGRESSIONS 5

This will bring (5) to the form

k 2k

(6) J|(ran/ - 1) (mW/ ~~ *)
j=k+1

with fc w 2P 1 and m Pl.m..Pr < nj 0' > 2)-

But (6) would imply that

(-1 )k~\mni - 1) (-1/ (mod mni+1)

that is, m,îl+1 | m"1 ; this is impossible, since m > 1. This concludes the

We can now prove the

THEOREM. Let m be an integer, m > 1. There exist infinitely many primes

p such that p 1 (mod m).

Proof. By a familiar argument [10], it suffices to prove the existence, for
each m> 1, of at least one prime p 1 (mod m). (If p\ 1 (mod m) and

P2 1 (mod pirn), then /?2 1 (mod m) and p2 > pirn + 1 > Pi •)

Now let m be an integer, m > 1, and let /?i,... ,/Ty be its distinct prime
divisors. Define the integer N by

\jnm/pi _ _ l]
•

Then A/" > 1 by Lemma 3. Let g be any prime divisor of N ; we shall show
that

(8) q 1 (mod m).

Since # | Af, we have

proof.

(9)

and

(10) q I rnm - 1

It follows from (10) that q does not divide m, whence

(11) q I mq~l - 1
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By (10), (11) and Lemma 1,

(12) qIm
Suppose now that (8) does not hold. Then (m, q — 1) — for some /,

Pi
1 < i < s, whence by (12),

(13) q I mm'Pi - 1

and therefore

Mm _ 1 Pi~ 1

<14)

is=0

But (14) is impossible, for with (9) it implies that Pi q, contradicting the

fact that q does not divide m. This concludes the proof of the theorem.

Remark. Several elementary proofs of this special case of Dirichlet's
theorem are known; see [1], [2, §11.3], [4, §48], [5], [6], [7, §6.1A], [8,

Ch. 6,5], [9], [10] and the references in [7, pp. 241-245]. They involve, more

or less explicitly, the cyclotomic polynomials, say Ow(x). Although the proof
we have given here does not require any knowledge of these polynomials,
the integer N defined in (7) is in fact equal to Om(ra), as can be seen with
Lemmas 1 and 2 and the identity [2, p. 181]

*»(*) IK*"7' -
d\n

where p is the Möbius function (see also [4], §46).
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