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A PARTICULAR CASE OF
DIRICHLET’S THEOREM ON ARITHMETIC PROGRESSIONS

by Nairi SEDRAKIAN and John STEINIG

Dirichlet’s theorem on primes in an arithmetic progression states that if a
and m are relatively prime integers, there exist infinitely many primes p such
that p = a (mod m). We give here an elementary proof of the case in which
a=1.

We use the following notation. If xi,...,x, are positive integers, with
r > 2, (x1,...,x,) denotes their greatest common divisor and [xj,...,x,]
their least common multiple. For » = 1, we set (x;) := x; and [x1] := x3.

The proof rests on three lemmas.

LEMMA 1. If m and ai,...,a, are integers, with m > 1 and a; > 1 for
1 <i<vr, then

(1) (m* —1,...,m*" —1) = m@ 1.
Proof. The case r =1 is trivial. The case r =2 can be established by
computing (m* — 1,m* — 1) with the euclidean algorithm; the computation

runs parallel to that of (ai,az). One can then continue by induction, using
the associative property

(x17 cee ,Xr) = ((xb' 5 . 7xr-l))xr> .

(For a different proof of the case r =2, see [8], p.26.)
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LEMMA 2. If x),...,x, are positive integers, then
H(xi) H (-xl'axj7xk) T
» i i<j<k
(2) [x1;~--:xr]: )
H(xhxj) H (xi;xj:xk:xﬁ)'
i<j i<j<k<l

where the numerator on the right hand side is the product of the gcd’s of
X1,...,Xr, taken n at a time for odd n = 1.3, ... ; the denominator is the

’

product of the ged’s of xi, ..., Xy, taken n at a time for even n=24,... .

2 b

There are 2"~ factors in the numerator and 2~ — 1 in the denominator.

Proof. The case r =1 is trivial. For r = 2, identity (2) is the familiar
X1 X

3) [x1, 5] = ——— .
(x1:x2)

One can continue by induction, using (3) and the associative and distributive
properties

respectively

(Identity (2) is due to V.-A. Le Besgue ([3], pp.51-53), whose proof
consists in showing that any prime divides both sides of (2) to the same
power.)

LEMMA 3. Let m be an integer, m > 1, let py,...,p, be distinct primes
which divide m. Then
4) (™o — 1, w1 <m™ -1

Proof. Since m™—1 is divisible by each integer m™/P —1 (i=1,...,r),

it is divisible by their least common multiple. Hence (4) will be proved if we
can show that

(5) [P 1w 1] = 1

is impossible. To this end, we rewrite the left hand side of (5) by setting
x; = m™P — 1 in Lemma 2, and then apply Lemma 1 to the gcd’s which
occur. Since py, ..., p, are distinct primes, we have

7 7

(iys - o5 X)) = PP ] if 1<p<---<i;<r.
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This will bring (5) to the form

k 2k
(6) [[en - =[] =" -1,
=1 j=k+1
with k =2""" and n; = ;- <m; (j=2).

But (6) would imply that
(=D Y™ — 1) = (=¥ (mod m™ Ty,

that is, m™*! | m™ ; this is impossible, since m > 1. This concludes the
proof.

We can now prove the

THEOREM. Let m be an integer, m > 1. There exist infinitely many primes
p such that p =1 (mod m).

Proof. By a familiar argument [10], it suffices to prove the existence, for
each m > 1, of at least one prime p =1 (mod m). (If p;y =1 (mod m) and
p2> =1 (mod pym), then pp =1 (mod m) and p, > pim+1>p;.)

Now let m be an integer, m > 1, and let p;,...,p, be its distinct prime
divisors. Define the integer N by

m" — 1

7 =
( ) N [mm/pl _ 1’ . 7mm/ps o 1] .

Then N > 1 by Lemma 3. Let ¢ be any prime divisor of N ; we shall show
that

() g=1 (mod m).

Since ¢ | N, we have

m™ — 1 _
9) q R fori=1,...,s
and
(10) glm"—1.

It follows from (10) that ¢ does not divide m, whence

(11) g|mi—t—1.
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By (10), (11) and Lemma 1,
(12) | g|m™a~b 1,
Suppose now that (8) does not hold. Then (m,qg — 1) [ _n_z for some i,
1 <i<s, whence by (12),
(13) g|mmP -1

and therefore

—1
mt—1 K
- @ = m/pl Vo= 4.
(14) 1 = L b o ).

But (14) is impossible, for with (9) it implies that p; = g, contradicting the
fact that ¢ does not divide m. This concludes the proof of the theorem.

REMARK. Several elementary proofs of this special case of Dirichlet’s |
theorem are known; see [1], [2, §11.3], [4, §48], [5], [6], [7, §6.1A], [8,
Ch. 6,5], [9], [10] and the references in [7, pp.241-245]. They involve, more
or less explicitly, the cyclotomic polynomials, say ®,(x). Although the proof
we have given here does not require any knowledge of these polynomials,
the integer N defined in (7) is in fact equal to ®,,(m), as can be seen with
Lemmas 1 and 2 and the identity [2, p. 181]

D, (x) = H(x”/d - 1)”@ ,

d|n

where 1 is the Mobius function (see also [4], §46).
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