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REMARK. In fact, one can prove the following: the frequencies of factors
of length n take at most p(n+1)—p(n)+r,+1, values, where r, (respectively,
1) denotes the number of factors having more than one right (respectively,
left) extension.

We deduce from this theorem that if p(n+ 1) — p(n) is uniformly bounded
with 7, the frequencies of factors of given length take a finite number of
values. Indeed, using a theorem of Cassaigne quoted below (see [10]), we can
easily state the following corollary.

THEOREM 7. If the complexity p(n) of a sequence with values in a finite
alphabet is sub-affine then p(n+ 1) — p(n) is bounded.

COROLLARY 1. If a sequence over a finite alphabet has a sub-affine
complexity, then the frequencies of its factors of given length take a finite
number of values.

Examples of sequences with sub-affine complexity function include the
fixed point of a uniform substitution (i.e., of a substitution such that the
images of the letters have the same length), the coding of a rotation or the
coding of the orbit of a point under an interval exchange map with respect
to the intervals of the interval exchange map.

2.3 FREQUENCIES OF FACTORS OF STURMIAN SEQUENCES

In particular, in the Sturmian case (p(n) = n + 1, for every integer n),
Theorem 6 implies the following result (see [3]).

THEOREM 8. The frequencies of factors of given length of a Sturmian
sequence take at most three values.

Consider a Sturmian sequence of angle «. We have seen in Section 2.1

that the frequency of a factor w;---w, of u is equal to the length of the

interval
n—1

H(wy, ..., w,) = m R—j(l’wj—f—l) )
Jj=0

and that these sets I(wy,...,w,) are exactly the intervals bounded by the
points

0,{1-0a},...., {n(1 -—a)} .
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We deduce from Theorem 8 that the lengths of the intervals I(wy,...,w,),
and thus the lengths of the intervals obtained by placing the points
0,{l—a},..., {n(1 —a)} on the unit circle, take at most three values.
Hence Theorem 8 is equivalent to the three distance theorem and provides a
combinatorial proof of this result.

REMARK. In fact this point of view, and more precisely the study of the
evolution of the graphs of words with respect to the length n of the factors,
allows us to give a proof of the most complete version of the three distance
theorem as given in [53] (for more details, the reader is referred to [3]).

3. THE THREE DISTANCE THEOREM

The three distance theorem was initially conjectured by Steinhaus, first
proved by V. T. S6s (see [53] and also [52]), and then by Swierczkowski [56],
Suranyi [55], Slater [51], Halton [31]. More recent proofs have also been
given by van Ravenstein [44] and Langevin [35]. A survey of the different
approaches used by these authors is to be found in [44, 51, 35]. In the literature
this theorem is called the Steinhaus theorem, the three length, three gap or
the three step theorem. In order to avoid any ambiguity, we will always call
it the three distance theorem, reserving the name three gap for the theorem
introduced in the next section.

THREE DISTANCE THEOREM. Let 0 < a < 1 be an irrational number and
n a positive integer. The points {ia}, for 0 < i < n, partition the unit circle
into n+1 intervals, the lengths of which take at most three values, one being
the sum of the other two.

More precisely, let (%)keN
and partial quotients associated to o in its continued fraction expansion (if

a=[0,c1,¢a,...], then % =[0,¢1,...,¢a]). Let m = (—D*(grax — pi). Let

and (cpren be the sequences of convergents

n be a positive integer. There exists a unique expression for n of the form
n=mgy+ qk—1 + 1,

with 1 <m < cxyy and 0 < r < gy. Then the circle is divided by the points
0,{a},{2a},...,{na} into n+1 intervals which satisfy:
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