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THREE DISTANCE THEOREMS
AND COMBINATORICS ON WORDS

by Pascal ALESSANDRI and Valérie BERTHE

ABSTRACT. The aim of this paper is to investigate the connection between some
generalizations of the three distance theorem and combinatorics on words for sequences
defined as codings of irrational rotations on the unit circle. We also give some new
results concerning the frequencies of factors for such sequences.

1. INTRODUCTION

For a given « in 10, 1[, let us place the points {0}, {a},{2a},...,{na}
on the unit circle (we mean here the circle of perimeter 1), where {x} denotes
as usual, the fractional part of x (i.e., if |x| denotes the largest integer not
exceeding x, {x} = x— |[x]). These points partition the unit circle into n+ 1
intervals having at most three lengths, one being the sum of the other two.
This property is known as the three distance theorem and can be seen as a
geometric interpretation of good approximation properties of the Farey partial
convergents in the continued fraction expansion of «.

The connection between this classical theorem in diophantine approximation
and combinatorics on words is particularly apparent in the following result,
known as the three gap theorem, which is equivalent to the three distance
theorem and can be seen as its “dual”: assume we are given « and [ in the
interval ]0, 1[, the gaps between the successive n for which {an} < (3 take
at most three values, one being the sum of the other two. It is indeed natural
to introduce the binary sequence with values 0 and 1, defined as the coding
of the orbit of a point of the unit circle under the rotation by angle o with



104 P. ALESSANDRI AND V. BERTHE

respect to the intervals [0, B[, [5, 1] (in particular, if 8 equals 1 —« or «,
this sequence is a Sturmian sequence): the lengths of strings consisting of
0’s and 1’s are thus directly connected with the three gaps. In fact, the three
distance and the three gap theorems have deep relations with the measure-
theoretic and topological properties of the dynamical systems associated with
codings of rotations.

The aim of this paper is to review the different generalizations of the
three distance and three gap theorems and to emphasize the relationships with
combinatorics on words. This paper is organized as follows. We recall in
Section 2 basic definitions and properties concerning codings of rotations.
We emphasize the connections between frequencies of factors of given length
for such sequences and the lengths of the intervals obtained by partitioning
the unit circle by a set of points in arithmetical progression. We prove in
particular that the three distance theorem is equivalent to the fact that the
frequencies of factors of given length of a Sturmian sequence take at most
three values. Furthermore, this last statement is easily proved by using the
notion of graph of words, which gives us a very simple combinatorial proof
of the three distance theorem. Section 3 1s devoted to the study of the three
distance theorem. We introduce the three gap theorem in Section 4. We will
deduce from these two theorems, in Section 5, the expression of the recurrence
function of a Sturmian sequence, due to Hedlund and Morse [40]. Section 6
deals with generalizations of the three distance and the three gap theorems.
We give in Section 7 a direct proof of a particular case of the two-dimensional
version of the three distance theorem (i.e., that there are at most 5 lengths
when the unit circle is partitioned by the points {ia} and {ia+ [}, for
0 <i<n). In Section 8, we give a proof of the 3d distance theorem, proved
by Chung and Graham [18, 37] (i.e., that there are at most 3d lengths when
the unit circle is partitioned by the points {k;x + 7}, for 0 < i < d and
0 <k <n).

In each case, we study the connection with frequencies of codings of
rotations. More precisely, we prove that the frequencies of a coding of an
irrational rotation with respect to a partition in two intervals take ultimately at
most 5 values and we deduce from the two-dimensional version of the three
distance theorem that the frequencies of a coding of an irrational rotation with
respect to a partition in d intervals of the same length take ultimately at most
d+ 3 values; more generally, we prove that the frequencies of a coding of an
irrational rotation with respect to a partition into d intervals (not necessarily
of the same length) take ultimately at most 34 values (this result corresponds
to the 3d distance theorem).
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Let us first review some of the many related results and applications of the
three distance theorem. We will focus on the theorem itself and its different
proofs in Section 3.

As one of the first applications the theorem of Hartman [33] (which answers
an earlier question of Steinhaus concerning the circular dispersion spectrum)
has been proved in [53]. ‘

THEOREM 1. Let 0 < a < 1 be an irrational number and let n be a
positive integer. Let H, (respectively, hy) denote the maximal (respectively,
the minimal) length of the n+ 1 intervals obtained by partitioning the unit
circle by the points of the set {ia, 0 <i<n— 1}. If the partial quotients
of the regular continued fraction expansion of o are unbounded, then

liminf n-h, =0,
n——+00

limsup n-h, =1,
n—-+4oc

liminf n-H, =1,

n—-—+o0

limsup n-H, = +o0.
n—-+oo

In [21] Deléglise studies the length L(h) of the smallest closed interval [
of the unit circle such that I.2I,....hI cover the circle. More precisely, he
shows the following result.

THEOREM 2. Let I be a closed interval of minimal length L such that

[,21..... kI cover the circle; we have, for h > 3,
B {3/(/1(]1 +2)), if h=0o0r1 mod3,
~ 3/(hh+2)—2). ifh=2 mod3.

In particular, the function L(h) is equivalent to 3/h’ when 4 tends towards
infinity.

In [7], Bessi and Nicolas apply the three distance theorem to 2-highly
composite numbers, i.e., if A, denotes the set of integers having only 2 and
3 as prime factors, an integer n in AN, is said to be a 2-highly composite
number if for any m in A5 such that m < n, then the number of divisors of
m is strictly less than n. They prove, in particular, that there exists a constant

¢ such that the number of 2-highly composite numbers smaller than X is
larger than c(log X)*/3.
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In [8] Boshernitzan extends the three distance theorem to the case of
interval exchange maps in his proof of Keane’s conjecture, which states the
unique ergodicity of Lebesgue almost all minimal interval exchange maps.
Let us recall briefly the definition of an interval exchange map. Assume we
are given A = (Ap,...,A,) in the positive cone in R", ie., \; > 0, for
1<i<r;it deﬁnes a segment / = (0, Z; M| of R composed of r intervals
L= M o0 Ml for 0 <i < r—1 and by taking Ao = 0. Let o denote
a permutation of {1,2,...,r}. The interval exchange map T associated with
A and o is defined as the map from [ to I which exchanges the intervals I;
according to the permutation o :

T(x) =x+ (Z )\a—l(]')—z}\,), for x e I;.

j<o(i) Jj<i
The n-fold iterate of T is also an interval exchange map of say r(n) intervals
Ii, ..., 1. Boshernitzan proved the following

THEOREM 3. The number of intervals I, ..., 1L, of different length is
not greater than 3(r — 1), for all n > 1.

Let us note that a two interval exchange map is a rotation; hence when r = 2,
this theorem reduces to the three distance theorem.

As another ergodic application, we have the following. In [5] (see also
[12]) topological and measure-theoretic covering numbers (i.e., the maximal
measure of Rokhlin stacks having some prescribed regularity properties) are
computed first for the symbolic dynamical systems associated to the rotation
of argument « acting on the partition of the circle by the point S and then
to exchange of three intervals; in this way, it is proved that every ergodic
exchange of three intervals has simple spectrum, and a new class of exchanges
of three intervals having nondiscrete spectrum is built. Results for irrational
rotations of the torus T? can also be obtained, by replacing intervals by
Voronoi cells (see [16]).

The connections between Beatty sequences and the three distance and three
gap theorems, and more precisely with the gaps in the intersection of Beatty
sequences, have been investigated by Fraenkel and Holzman in [26]. We will
discuss their results in Section 6.

J. Shallit introduces in [47] a measure of automaticity of a sequence.
This measure counts the number of states in a minimal deterministic finite
automaton which generates the prefix of size n of this sequence. Let us recall
that a sequence has a finite measure of automaticity if and only if this sequence
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is a letter-to-letter projection of a fixed point of a constant length morphism
of a free monoid. The author deduces in [47] a measure of automaticity of
Sturmian codings of rotations from the three distance theorem, which are
shown to have a high automaticity measure, even when they are fixed points
of homomorphism.

THEOREM 4. Let 0 < a < 1 be an irrational number with bounded
partial quotients. Let u, = |(n+ )| — |na], for n > 1. The automaticity
of the sequence (un),>\ has the same order of magnitude as n'/3.

Let us also note the following two applications of the three distance theorem
in theoretical computer science. The first one deals with multiplicative hashing,
as Fibonacci hashing, and is quoted in [34]. The second one is due to Lefevre
and gives a fast algorithm for computing a lower bound on the distance
between a straight line and the points of a regular grid. This algorithm is used
to find worst cases when trying to round the elementary functions correctly
in floating-point arithmetic (see [36]).

Langevin studies in [35] the three distance theorem in connection with a
mathematical model of the ventricular parasystole. He proves in particular the
following generalization of the three distance theorem to lattices.

THEOREM 5. Let L be a lattice in R%. Let I be a bounded interval of
R and let L(I) = {(x,y), x €I} N L. For any point M of L(I), let S(M)
denote the smallest point M’ # M of L(I) such that M is smaller than M’,
in lexicographic order. Then there exists a basis (U,V) of the lattice L such
that for any point M of L(I), the difference S(M) — M is either equal to
U, VorU+V.

Let us note that this theorem has been generalized by Fried and V.T. Sés to
groups in [28].

Finally, van Ravenstein studies in [43] the phenomenon of phyllotaxis, i.e.,
the regular leaf arrangement, which is given by the Fibonacci phyllotaxis for
most plants (see also the work of Marzec and Kappraff in [38]). In [42] van
Ravenstein also applies the three distance theorem to evaluate some values of
the discrepancy of the sequence (na),en, for « irrational.
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2. CODINGS OF ROTATIONS

The aim of this section is to introduce some definitions concerning
sequences defined as codings of irrational rotations on the unit circle, and
more precisely measure-theoretic and topological properties of sequences with
values in a finite alphabet. For p > 2, let F = {8y < f1 <--- < B,—1} be
a set of p consecutive points of the unit circle (identified in all that follows
with [0, 1[ or with the unidimensional torus R/Z) and let 3, = (. Let «
be an irrational number in ]0, 1[ and let us consider the positive orbit of a
point x of the unit circle under the rotation by angle «, i.e., the set of points
{{an+x}, n € N}. We denote by N the set of non-negative integers. The
coding of the orbit of x under the rotation by angle « with respect to the

partition {[Bo, 81, [B1, ol - .-, [Bp—1,Bpl} is the sequence (un)nen defined
on the finite alphabet £ = {0,...,p — 1} as follows:

up =k <= {x+na}l €6, Greil, for 0<k<p-—1.

A coding of the rotation R means the coding of the orbit of a point x of the
unit circle under the rotation R with respect to a finite partition of the unit
circle consisting of left-closed and right-open intervals.

For instance, consider the case F = {0,1 — a}, i.e.,

'P:{[O,l—@[, []—Oz,l[},

where « 1s an irrational number in 10, 1[. We could also choose to code the
orbit of the rotation with respect to the following partition :

P ={10,1-al,]1 —a,1]}.

As « 1is irrational, the two sequences obtained by coding with respect
to P or to P’ are ultimately equal. Such sequences are called Sturmian
sequences (such a coding is called a Sturmian coding). Sturmian sequences
have received considerable attention in the literature. We refer the reader to
the impressive bibliography of [9]. A recent account on the subject can also be
found in [6]. The most famous Sturmian sequence is the Fibonacci sequence
(a=7—1, x=a, where 7 = (/5 + 1)/2 denotes the golden ratio); this
sequence is the fixed point of the following substitution
o(l) =10, o) =1.

Let us recall that a substitution defined on the finite alphabet A is a map
from A to the set of words defined on A, denoted by A*, extended to A*
by concatenation or, in other words, a homomorphism of the free monoid A*.

The results stated for codings of rotations with respect to left-closed and
right-open intervals are obviously true for left-open and right-closed partitions.




THREE DISTANCE THEOREMS 109

71 COMPLEXITY AND FREQUENCIES OF CODINGS OF ROTATIONS

A factor of the infinite sequence u is a finite block w of consecutive
letters of u, say w = Uyti - Unyq; d is called the length of w, denoted by
lw|. Let p(n) denote the complexity function of the sequence u with values
in a finite alphabet: it counts the number of distinct factors of given length
of the sequence u. For more information on the subject, we refer the reader
to the survey [2].

With the above notation, consider a coding u of the orbit of a
point x under the rotation by angle « with respect to the partition
{180, 3L, 181, Bal, .-, [Bp—t1, Bpl}. Let I = [k, Bi1[ and let R denote
the rotation by angle a. A finite word w ---w, defined on the alphabet
> ={0,1,...,p— 1} is a factor of the sequence u if and only if there exists

7

an integer k such that

n—1

{x+ka} € I(wy,...,wy) = [ R (uyy,) -

j=0
As « is irrational, the sequence ({x+na}),en is dense in the unit circle, which
implies that w w; - --w, is a factor of u if and only if I(wi,...,w,) # <.
In particular, the set of factors of a coding does not depend on the initial
point x of this coding. Furthermore, the connected components of these sets
are bounded by the points

k(1 —a)+ 6}, for 0<k<n—-1,0<i<p—1.

Let us recall that the frequency f(B) of a factor B of a sequence is the
limit, if it exists, of the number of occurrences of this block in the first &
terms of the sequence divided by k. Thus the frequency of the factor w - - - w,
exists and is equal to the density of the set

{k ’ {x + ka} El(wl,...,wn)},

which is equal to the length of I(w,...,w,), by uniform distribution of
the sequence ({x + na}),en. These sets consist of finite unions of intervals.
More precisely, if for every k, (ry1 — Br < sup(a, 1 — ), then these sets are
connected; if there exists K such that Jx.; — B¢ > sup(a, 1 — «), then the
sets are connected except for wj - - - w, of the form a% (see [1]) (the notation
ay denotes the word of length n obtained by successive concatenations of
the letter ag). Let us note that there exists at most one integer K satisfying
Bx+1 — Bk > sup(a, 1 — ). We thus have the following lemma, which links

the three distance theorem and related results to the frequencies of codings of
rotations.
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LEMMA 1. Let u be a coding of a rotation by irrational angle o on the
unit circle with respect to the partition

{[50761[) [)61762[7' c e [lgp—laﬁp[} 3

such that the lengths of the intervals of the partition are less than or equal
to sup(a, 1 — ). Then the frequencies of factors of length n of the sequence
u are equal to the lengths of the intervals bounded by the points

{k(1 =)+ B}, for 0<k<n—-1, 0<i<p-1.

In particular, if the partition is equal to {[0,1 — «f, [1 — «, 1[}, i.e., if u
1s a Sturmian sequence, the intervals I(wq,...,w,) are exactly the (n+ 1)
intervals bounded by the points

07 {(1*&)},,{(1’1(1—0[)}

Therefore there are exactly n+ 1 factors of length » and the complexity of
a Sturmian sequence satisfies p(n) = n + 1, for every n. Furthermore, the
lengths of these intervals are equal to the frequencies of factors of length x.

In fact, this complexity function characterizes Sturmian sequences. Indeed,
any sequence of complexity p(n) = n+1, for every n, is a Sturmian sequence,
1.e., there exists « irrational in ]O,1[ and x such that this sequence is the
coding of the orbit of x under the rotation by angle « with respect either
to the partition {[0,1 — af, [l —a, 1[} or {]0,1 —«], 11 — o, 1]} (see [40])
(the coding of the orbit of « 1is called the characteristic sequence of «).
Note that a sequence whose complexity satisfies p(n) < n, for some n,
i1s ultimately periodic (see [19] and [39]). Sturmian sequences thus have
the minimal complexity among sequences not ultimately periodic. Sturmian
sequences are also characterized by the following properties.

e Sturmian sequences are exactly the non-ultimately periodic balanced
sequences over a two-letter alphabet. A sequence is balanced if the
difference between the number of occurrences of a letter in any two
factors of the same length is bounded by one in absolute value.

o Sturmian sequences are codings of trajectories of irrational initial slope in
a square billiard obtained by coding horizontal sides by the letter 0 and
vertical sides by the letter 1.

In the general case of a coding of an irrational rotation, the complexity has
the form p(n) = an+ b, for n large enough (see Theorem 10 below and [1],
for the whole proof). The converse is not true: every sequence of ultimately
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affine complexity is not necessarily obtained as a coding of rotation. Didier
gives in [23] a characterization of codings of rotations. See also [46], where
Rote studies the case of sequences of complexity p(n) = 2n, for every n.
However, if the complexity of a sequence u has the form p(n) = n + k, for
n large enough, then u is the image of a Sturmian sequence by a morphism,
up to a prefix of finite length (see for instance [22] or [1]).

2.2 THE GRAPH OF WORDS

The aim of this section is to introduce the Rauzy graph of words of a
sequence, in order to obtain results concerning the frequencies of factors of
this sequence. This follows an idea of Dekking, who expressed the block
frequencies for the Fibonacci sequence by using the graph of words (see
[20] and also [8]). Note that Boshernitzan also introduces in [8] a graph for
interval exchange maps (homeomorphic to the Rauzy graph of words) in order
to prove Theorem 3, which can be seen as a result on frequencies.

Let us note that precise knowledge of the frequencies of a sequence with
values in a finite alphabet A allows a precise description of the measure
associated with the dynamical system (O(x),T): here T denotes the one-
sided shift which associates to a sequence (u,),en the sequence (u,41)neN
and O(u) is the orbit closure under the shift 7 of the sequence u in AN,
equipped with the product of the discrete topologies (it is easily seen that O(x)
1s the set of sequences of factors belonging to the set of factors of u). Indeed,
we define a probability measure u on the Borel sets of O(u) as follows:
the measure p is the unique T -invariant measure defined by assigning to
each cylinder [w] corresponding to the sequences of O(u) of prefix w, the
frequency of w, for any finite block w with letters from 4. Let us note that
a dynamical system obtained via a coding of irrational rotation is uniquely
ergodic, 1.e., there exists a unique 7 -invariant probability measure on this
dynamical system, which is thus determined by the block frequencies.

The Rauzy graph I', of words of length n of a sequence with values
in a finite alphabet is an oriented graph (see, for instance, [41]), which is
a subgraph of the de Bruijn graph of words. Its vertices are the factors of
length n of the sequence and the edges are defined as follows: there is an
edge from U to V if V follows U in the sequence, i.e., more precisely, if
there exists a word W and two letters x and y such that U = xW, V = Wy
and xWy is a factor of the sequence (such an edge is labelled by xWy). Thus
there are p(n+1) edges and p(n) vertices, where p(n) denotes the complexity
function. A sequence is said to be recurrent if every factor appears at least
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twice, or equivalently if every factor appears an infinite number of times in
this sequence. For instance, codings of rotations are recurrent. Note that the
Rauzy graphs of words of a sequence are always connected ; furthermore, they
are strongly connected if and only if this sequence is recurrent.

If B is a factor, then a letter x such that Bx (respectively, xB) is also
a factor is called right extension (respectively, left extension). Let U be a
vertex of the graph. Denote by U™ the number of edges of T, with origin U
and U~ the number of edges of I', with end vertex U. In other words, U™

(respectively, U™ ) counts the number of right (respectively, left) extensions
of U. Note that

pin+—pmy = Y (U -D= ) U -1,
Uev(T,) uev(Iy,)
where V(I',) is the vertex set of T,.

In this section we restrict ourselves to sequences with values in a finite
alphabet, for which the frequencies exist. Note that the function which
associates to an edge labelled by xWy the frequency of the factor xWy is
a flow. Indeed, it satisfies Kirchhoff’s current law: the total current flowing
into each vertex 1s equal to the total current leaving the vertex. This common
value is equal to the frequency of the word corresponding to this vertex. Let
us see how to deduce, from the topology of a graph of words, information
on the number of frequencies for factors of given length. We will use the
following obvious result.

LEMMA 2. Let U and V be two vertices joined by an edge such that
Ut =1 and V- = 1. Then the two factors U and V have the same

frequency.

A branch of the graph I, 1s a maximal directed path of consecutive
vertices (U, ..., U,) (possibly m = 1), satisfying

Ut =1, fori<m, U =1, fori>1.

Therefore, the vertices of a branch have the same frequency and the number of
frequencies of factors of given length is bounded by the number of branches
of the corresponding graph, as expressed below (for a proof of this result due
to Boshernitzan, see [8]).

THEOREM 6. For a recurrent sequence of complexity function (p(n)), the
frequencies of factors of given length, say n, take at most 3(p(n + 1) — p(n))
values.
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REMARK. In fact, one can prove the following: the frequencies of factors
of length n take at most p(n+1)—p(n)+r,+1, values, where r, (respectively,
1) denotes the number of factors having more than one right (respectively,
left) extension.

We deduce from this theorem that if p(n+ 1) — p(n) is uniformly bounded
with 7, the frequencies of factors of given length take a finite number of
values. Indeed, using a theorem of Cassaigne quoted below (see [10]), we can
easily state the following corollary.

THEOREM 7. If the complexity p(n) of a sequence with values in a finite
alphabet is sub-affine then p(n+ 1) — p(n) is bounded.

COROLLARY 1. If a sequence over a finite alphabet has a sub-affine
complexity, then the frequencies of its factors of given length take a finite
number of values.

Examples of sequences with sub-affine complexity function include the
fixed point of a uniform substitution (i.e., of a substitution such that the
images of the letters have the same length), the coding of a rotation or the
coding of the orbit of a point under an interval exchange map with respect
to the intervals of the interval exchange map.

2.3 FREQUENCIES OF FACTORS OF STURMIAN SEQUENCES

In particular, in the Sturmian case (p(n) = n + 1, for every integer n),
Theorem 6 implies the following result (see [3]).

THEOREM 8. The frequencies of factors of given length of a Sturmian
sequence take at most three values.

Consider a Sturmian sequence of angle «. We have seen in Section 2.1

that the frequency of a factor w;---w, of u is equal to the length of the

interval
n—1

H(wy, ..., w,) = m R—j(l’wj—f—l) )
Jj=0

and that these sets I(wy,...,w,) are exactly the intervals bounded by the
points

0,{1-0a},...., {n(1 -—a)} .
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We deduce from Theorem 8 that the lengths of the intervals I(wy,...,w,),
and thus the lengths of the intervals obtained by placing the points
0,{l—a},..., {n(1 —a)} on the unit circle, take at most three values.
Hence Theorem 8 is equivalent to the three distance theorem and provides a
combinatorial proof of this result.

REMARK. In fact this point of view, and more precisely the study of the
evolution of the graphs of words with respect to the length n of the factors,
allows us to give a proof of the most complete version of the three distance
theorem as given in [53] (for more details, the reader is referred to [3]).

3. THE THREE DISTANCE THEOREM

The three distance theorem was initially conjectured by Steinhaus, first
proved by V. T. S6s (see [53] and also [52]), and then by Swierczkowski [56],
Suranyi [55], Slater [51], Halton [31]. More recent proofs have also been
given by van Ravenstein [44] and Langevin [35]. A survey of the different
approaches used by these authors is to be found in [44, 51, 35]. In the literature
this theorem is called the Steinhaus theorem, the three length, three gap or
the three step theorem. In order to avoid any ambiguity, we will always call
it the three distance theorem, reserving the name three gap for the theorem
introduced in the next section.

THREE DISTANCE THEOREM. Let 0 < a < 1 be an irrational number and
n a positive integer. The points {ia}, for 0 < i < n, partition the unit circle
into n+1 intervals, the lengths of which take at most three values, one being
the sum of the other two.

More precisely, let (%)keN
and partial quotients associated to o in its continued fraction expansion (if

a=[0,c1,¢a,...], then % =[0,¢1,...,¢a]). Let m = (—D*(grax — pi). Let

and (cpren be the sequences of convergents

n be a positive integer. There exists a unique expression for n of the form
n=mgy+ qk—1 + 1,

with 1 <m < cxyy and 0 < r < gy. Then the circle is divided by the points
0,{a},{2a},...,{na} into n+1 intervals which satisfy:
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e n+1—qi of them have length m; (which is the largest of the three
lengths),

e r+1 have length M1 — mn,

o gy — (r+1) have length m_y — (m— D).

REMARKS.

e One can reformulate this result in terms of n-Farey points. Let us recall
that an n-Farey point is a rational element %’ of [0.1] such that p > O,
1 <g<n and p, g are coprime (see [32] for 1nstance) Note that the two

(n (2)

Pk
successive n-Farey points, say pm and ‘%, satisfying pm <a<t O are o
T ‘i’; =1 with the above notation. The three distance theorem states that

Nk k—1

the lengths of the intervals belong to the set
(p? = ag?, ag® —p®, ag™ —¢®)+p® - pP} .

e As « is irrational, the three lengths are distinct. The third length in the
above theorem, which is the largest since it is the sum of the two others,
appears if and only if

n#qD+g? —1=m+Dg+aqe—1—1.

Thus there are infinitely many integers n for which there are only two lengths.
The other two lengths do always appear.

e The structure and the transformation rules for the partitioning in two-
length intervals are studied in details in [44]. Furthermore, in [45] van
Ravenstein, Winley and Tognetti prove the following : for a having as sequence
of partial quotients the constant sequence aaaa- - -, label by large and small
the lengths of intervals of the partition {ia}, for 0 < i < g, + g1 — 1,
where ¢, is the denominator of a reduced convergent of « (there are only two
lengths in this case); this binary finite sequence of lengths is a prefix after a
permutation of the characteristic sequence of « (i.e., the Sturmian coding of
the orbit of «). For a precise study of the limit points of these finite binary
sequences (corresponding to the two-length case), see [48].

e In the two-length case, it is easily seen that the largest length is less
than or equal to twice the second one. In [14] (see also [15, 16]) Chevallier
extends this result to the two-dimensional torus T?, by studying the notion
of best approximation.

e The point {(n+ 1)a} belongs to an interval of largest length in the
partition of the unit circle by the points {ia}, for 0 <i < n.
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o The three distance theorem is a geometric illustration of the properties of
good approximation of the n-Farey points. Indeed, the two intervals containing
0 are of distinct lengths and their lengths are the two smallest. We thus have

aqV — pV = inf {ka;, for 0 <k <n}

and
[7(2) — aq(z) — 1 — SUp{kO&.} for O S k S n} .

 For a deeper study of the rational case, the reader is referred for instance
to [51].

4. 'THE THREE GAP THEOREM

The following theorem, called the three gap theorem, is in some sense the
dual of the three distance theorem. This theorem was first proved by Slater
(see [49] and see also [50, 511), in the early fifties, whereas the first proofs
of the three distance theorem date back to the late fifties. For other proofs of
the three-gap theorem, see also [25], and more recently, [58] and [35].

The formulation of the three gap theorem quoted below is due to Slater.
Following the notation of [51], let k; be the sequence of integers k satisfying
ka < 3. Then any difference k; 1 —k; is called a gap. Moreover, the frequency
of a gap is defined as its frequency in the sequence of the successive gaps

(kit1 — ki)ien -

THREE GAP THEOREM. Let « be an irrational number in 10, 1] and let
B €]0,1/2[. The gaps between the successive integers j such that {oj} < 3

take at most three values, one being the sum of the other two.
o

9k’ keN
and partial quotients associated to « in its continued fraction expansion. Let

More precisely, let ( and (cp)ren be the sequences of the convergents

me = (—D¥(gra — pr). There exists a unique expression for 3 of the form

g =mn+ M1 + 0,

with k >0, 0 < <y, and if k =0 then 1 < m < ¢; — 1, otherwise,
1 < m < ciy1. Then the gaps between two successive j such that {jo} € [0, ]
satisfy the following :

e the gap qi has frequency (m — )m + Mt + 1,

o the gap qiyr1 — mqy has frequency 1,

e the gap qiy1 — (m — 1)gy has frequency mp — .
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REMARKS.

e Suppose that « is an irrational number. By density of the sequence
({na}),en, this theorem still holds when considering the gaps between the
successive integers k such that {ak} € I, where I denotes any interval of
the unit circle of length (.

e Furthermore, the third gap, which is the largest, can have frequency O,
when 7, = 1, with the above notation. This means that this gap does not
appear at all, as a consequence of the uniform distribution of the sequence
({na})wen in the circle.

e The other two gaps do always appear (infinitely often, in fact, because of
their positive frequencies) and are shown to be equal to the smallest positive
integers /; and [, such that {{ja} < § and {La} >1— 0 (see [51]).

e The study of the rational case proves the equivalence between the three
distance and the three gap theorems, as observed by Slater [51] in the case
of an open interval and by Langevin, for any interval, in [35].

4.1 CONNECTEDNESS INDEX

Let u = (uy),en be a coding of a rotation by irrational angle 0 < o < 1
with respect to the partition

P = {[ﬁO)ﬁl[) [519/62[:" o [/61’_17617[} )

We have seen in Section 2.1 that the sets I(w,...,w,) = ﬂ}:ol R (1L, ),
where [ = [, Biy1l, for 0 <j<p—1, are connected except for w; - - - w,
of the form af, where K denotes the index of the interval of P (if such an

interval exists) of length greater than sup(a, 1 — ).

Let us suppose that there exists an interval of P of length L greater than
I — o and index K, say. We deduce from the three gap theorem that the set
of integers n such that aj is a factor of the sequence u is bounded. More
precisely, let us define n) as the largest integer n such that a? is a factor
of the sequence u. We will call the integer n") the index of connectedness of
the sequence u. (If every interval of P has length smaller than or equal to
sup(c, I — ) then the connectedness index of u is equalto 1.) The three gap
theorem enables us to give an exact expression for the connectedness index.
Indeed n'" + 1 is the largest gap between the consecutive values of k for

!&v‘vhich 0 <{ka} < 1—L. We thus have the following
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THEOREM 9. Let u = (u,),en be a coding of the rotation by irrational

angle «o. Suppose that there exists an interval of P of length L > sup(a, 1—a).

Let (@ien

associated to o in its continued fraction expansion. Let m, = (— D (gra— pr).
Write

and (cp)ren be the sequences of convergents and partial quotients

l—L=mng+ Mg+,

with k>1, 0 <) < and 1 <m < cpp1. The connectedness index n of
the sequence u satisfies

n =g — m—Dae — 1, if  # i,
nY =g —mgr — 1, if Y = and m < Cgyq,
n(l):qk—l, if v =m and m = ¢y, .

472  APPLICATIONS

Precise knowledge of the connectedness index is useful, as shown by the
following. Indeed Lemma 1 can be rephrased as follows.

LEMMA 3. Let u be a coding of an irrational rotation on the unit

circle with respect to the partition {[Bo, Bi[, 151, B2l - .., [Bp—1,B,1}. The
frequencies of factors of u of length n > n'V, where n'V denotes the

connectedness index, are equal to the lengths of the intervals bounded by
the points

{k(l—a)+ 6}, for 0<k<n—1, 0<i<p-—1.

The complexity of a coding on p letters of an irrational rotation ultimately
has the form p(n) = an + b, where a < p, and depends on the algebraic
relations between the angle and the lengths of the intervals of the coding.
More precisely, we have the following theorem proved in [1].

THEOREM 10. Let u = (u,)nen be a coding of the irrational rotation R
of irrational angle o with respect to the partition

P = {[/80751 [) [ﬁl)ﬁZ[) AL [/8[)—17/817[} -
Let (ky)nen be the sequence defined by

ko = p = card(F) ,
ko, =card {3 € F; Vke€[1,...,n], RT“B) ¢ F} .
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Let a be the limit of this sequence, n® the smallest index such that k, = a,

and let .
n®—1

b= > (k—a.
i=0
Let n'V denote the connectedness index of u.
If n > max(nV,n?), then the complexity of the sequence u satisfies

p(n) =an+b.

REMARKS.

e Note that if 1,0.08;.....53, are rationally independent, then n® = 0,
b=0 and a =p.

e Theorem 10 answers the question of the existence of sequences of
ultimately affine complexity (for more details, the reader is referred to [1],

see also the result of Cassaigne in [11]).

4.3 BEATTY SEQUENCES

The connections between the three gap theorem and the Beatty sequences
have been investigated by Fraenkel and Holzman in [26]. Let us recall that a
Beatty sequence is a sequence u(a. p) = (u,)nen of the form u, = lan+p].
where « and p are real numbers such that a > 1. The number a 1is called the
modulus and p is called the residue or intercept. For an impressive bibliography
on the subject, we refer the reader to [27] and [54]. Fraenkel and Holzman
have noticed in [26] that the three gap theorem answers the question of the
gaps in the intersection of a Beatty sequence and an arithmetical sequence
(an 4 ¢)yen, for a a positive integer and ¢ .an integer. This result has been
obtained independently by Wolff and Pitman in [58]. By intersection of the

two Beatty sequences s = (Sp)pen and 1 = (#)uen. We mean the strictly
increasing sequence u defined as:

{tt,. n € N} ={u. k.1 € N such that u = s, = 1;} .

Hence a gap in the intersection denotes the difference between two distinct
elements of the intersection.

Note that Beatty sequences and Sturmian sequences are related: let u be

a Beatty sequence of modulus o and residue p; the characteristic sequence
(U)nen of u defined as

vy = 1 if and only if there exists m such that n = |am + p|
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is the Sturmian sequence obtained as the coding of the orbit of —p/a under
the rotation by angle 1/a, with respect to the partition

(10,1 —1/al, 11 = 1/a, 11} .

Indeed, if n = |am+p], then [1/a(n+1)—p/a]l =m+1 = 14[n/a—p/a],
and if |am+p| <n < |a(m+1)+p|, then [1/a(n+1)—p/a] = [n/a—p/a].

5. THE RECURRENCE FUNCTION

Let us deduce now from the three distance and three gap theorems a simple
proof of the following result originally due to Morse and Hedlund concerning
the recurrence function of a Sturmian sequence (see [40]).

Recall that a sequence u is called minimal or uniformly recurrent if every
factor of u appears infinitely often and with bounded gaps or, equivalently,
if for any integer n, there exists an integer m such that every factor of u of
length m contains every factor of u of length n. Note that it is equivalent
(see [30]) to the minimality of the dynamical system (O(u),T), i.e., the orbit
of every element of O(u) is dense, or equivalently every sequence in the orbit
closure of u has the same set of factors as u.

The recurrence function ¢ of a minimal sequence u is defined by

©(n) = min {m € N such that VB € L,, VA€ L,, A is a factor of B} ,

where L, denotes the set of factors of u of length n, i.e., ©(n) is the size of
the smallest window that contains all factors of length » whatever its position
in the sequence.

THEOREM 11. Let u be a Sturmian sequence with angle o. Let (gi)ren
denote the sequence of denominators of the convergents of the continued
fraction expansion of «. The recurrence function @ of this sequence satisfies
for any non zero integer n:

on) =n—1+qr+ g1, where g1 <n <g.

Proof of Theorem 11. Let u € {0, I}N be a Sturmian sequence. There
exist a real number x and an irrational number o« in ]0,1[ such that
u, =0 < {x+na} €Iy, with Iy = [0, af or Iy =]0, a] (see Section 2.1). Let
I = [a, 1] (respectively, Ja, 1]) if Iy = [0, o (respectively, Ip =]0, a]). Let
us denote by R the rotation of the circle by angle «. Assume we are given
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a positive integer n. We have seen in Section 2.1 that the word wjws - - - wy,
defined on {0, 1} appears in u if and only if

n—1

Iwy,...,w) = (VR Twy,) # 9.

j=0

We deduce from this that every Sturmian sequence of angle « has the same
factors as u and thus belongs to the orbit closure of u. Conversely, each
sequence of the orbit closure of u is a Sturmian sequence of angle «. Hence
the closed orbit of any Sturmian sequence is equal to the set of all Sturmian
sequences of the same angle. This implies the minimality of any Sturmian
sequence and that Sturmian sequences of the same angle have the same
recurrence function; hence we can suppose here that x = 0.

Theorem 11 can easily be deduced from the following two lemmata. We
omit the proof of Lemma 5, which is straightforward.

LEMMA 4. Let 6, be the smallest length of the nonempty intervals
I(wy, ..., wy), where wy,...,w, belong to {0,1}. Let 1, be the greatest
gap between the successive integers k such that {ka} € [0,6,[. We have

on)=n—14+1,.

LEMMA 5. Let (guien denote the sequence of denominators of the
convergents of the continued fraction expansion of «. Let k be an integer
such that qr—1 < n < gi. Then we have

611. — Me—1 and ln = qr + 9k—1 -

Proof of Lemma 4. A set of points is said to visit an interval if one
of these points belongs to this interval. By definition of ,, every set of I,
consecutive points of the sequence ({ka})ren Vvisits every interval of length 6,
(see above Remarks). Therefore they visit every nonempty interval of the form
I(wy,. .., w,), by definition of §,. Let B be a factor of u of length n—141,;
there exists an integer K such that B corresponds to the n—1-+1/, consecutive
points {Ka},...,{(K+n—1+1,—1)a}. The set of the I, first points of
this sequence of points visits every interval of the form I(wy, ..., w,), thus
B contains every factor of u of length n. This implies that on)<n—1+1,.

By definition of /, and by density of ({ka}Pren, there exists a sequence

of [, — 1 points of the sequence ({ka})ien Which do not visit an interval of
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the form I(wy,...,w,) of length ¢, ; therefore, there exists a factor of u of
length [, — 2 + n which does not contain the factor w;j---w,. This shows
that ¢(n) > n—1+41,. The lemma is thus proved.

REMARK. Note that in the case of the Fibonacci sequence (o = */52_1 )s
the recurrence function satisfies, for Fy_; < n < F},

pomn)y=n—14 Fiy1,

where (F,),en denotes the Fibonacci sequence F,iy = F,+F,—1, with Fy =1
and F; = 2.

This result is extended in [13] to the fixed point of the substitution o
introduced by Rauzy which generalizes the Fibonacci substitution and is
defined by ¢(0) =01, (1) =02, ¢(2) = 0.

THEOREM 12. Let T, denote the so-called Tribonacci sequence defined
as follows: Tyy3 = Tpao + Tpay + Ty, with To = 0, Ty =0, T} = 1.
The recurrence function @ of the fixed point beginning with 0 of the Rauzy
substitution satisfies for any positive integer n:
k+1 k42

omn)=n—1+Trrg, where ZTi<n§ZTi.
0 0

6. HIGHER-DIMENSIONAL GENERALIZATIONS

6.1 TWO-DIMENSIONAL GENERALIZATIONS AND BEATTY SEQUENCES

Let us consider now some two-dimensional versions of the three distance
and three gap theorems. Such generalizations were introduced by Fraenkel and
Holzman in [26] in order to give an upper bound for the number of gaps in the
intersection of two Beatty sequences. They first reduce this problem to a two-
dimensional version of the three distance theorem, conjectured by Simpson
and Holzman and proved by Geelen and Simpson (see [29]). Then they deduce
from this theorem a bound for the number of gaps in the intersection of two
Beatty sequences, when at least one of the moduli is rational.

Let us first give the two-dimensional version of the three gap theorem
introduced by Fraenkel and Holzman. We will use the same notation as in
[26]: for any pair of real numbers (x,y), {(x,y)} means the equivalence class
of (x,y) mod Z?,ie., {(x,y)} belongs to the torus T?.
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THEOREM 13. Let «y, oo, B1, P2, i1 and pp be real numbers in
[0, 1[. The gaps between the successive values of the integers n such that the
following points of the torus T?

{(nay, nan)}

belong to the rectangle

R={{N}: 1 — B <x<p, po—Poa<y<pa}

take a finite number of values which depend only on oy, aa, B, and [3.

Furthermore, if at least one of the two angles «; and c is rational, then
the number of gaps is bounded by q + 3, where q is the minimum of the
denominators of o and oy in lowest terms (the denominator of an irrational
number is considered as +o0 ).

Let us state now the two-dimensional version of the three distance theorem
proved in [29] by Geelen and Simpson.

THEOREM 14. Assume we are given two real numbers «;, oy and two
positive integers ny, ny. The set of points

lioy +jay+p, 0<i<n —1,0<j<n—1}

partitions the unit circle into intervals having at most min{ny,ny} +3 lengths.

Note that the bound min{n;,n,} + 3 is not the best possible when n,
or n, = 1. Indeed, in this case, the statement reduces to the three distance
theorem. For a discussion on the achievability of the bound, the reader is
referred to [29].

Fraenkel and Holzman have proved in [26] that Theorems 13 and 14
together answer the question of the intersection of two Beatty sequences,
when at least one modulus is rational. We define a gap in the intersection
of two Beatty sequences to be a difference between two successive elements
of the intersection, and an index-gap to be the difference between the two
corresponding indices in the same Beatty sequence.

THEOREM 15. Let (|nay + p1nen and (|nag + pa|)nen be two Beatty
sequences, with at least one of the two moduli o, and o, rational. Let g
denote the minimum of the denominators of «; and oy in lowest terms (the
denominator of an irrational number is considered as +o00). The number of

gaps and index-gaps in the intersection is bounded by q+ 3, if ¢ > 2, and
bounded by 3 otherwise.
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Fraenkel and Holzman show furthermore that this bound is achievable and
that the number of gaps can be made arbitrarily large, when at least one of
the moduli is rational.

6.2 COMBINATORIAL APPLICATIONS

Now let us review some applications of Theorems 13 and 14. For instance
we can deduce the following result for the intersection of two Sturmian
sequences.

THEOREM 16. Let s = (Sy)nenN and t = (t,)neN be two Sturmian sequences.
The number of gaps between the successive integers n such that s, = t, is
finite.

Proof. Let s = (Sp)uen and t = (f,),en be two Sturmian sequences of
angles o and (3, with corresponding partitions {ly,I;} and {Jy,J;}. The
gaps between the integers n such that the points {(na,nf3)} in T? belong '
to the rectangle Iy x Jy (respectively, I; x Ji) take a finite number of values,
hence so do the gaps between the successive integers n such that the points
{(na, nB)} in T? belong to the set Iy X Jo U I x Jy.

We also deduce from Theorem 14 and Lemma 3 the following

THEOREM 17. Let u be a coding of the irrational rotation by angle
0 < a < 1 with respect to a partition into d intervals of length 1/d. The
frequencies of factors of u of length n > sup {n(” ,d} take at most d + 3
values, where 'V denotes the connectedness index.

Proof. This result is a direct application of Lemma 3 and Theorem 14.
Indeed, the intervals I(wj,...,w,) (corresponding to the factors w - --w, of
length n) are bounded by the points

{il-w+j/d, 0<i<n-—1, 0<j<d—1}.

Vuillon has introduced in [57] two-dimensional generalizations of Sturmian
sequences obtained by considering the approximation of a plane of irrational
normal by square faces oriented along the three coordinates planes. Theorem
14 can also be applied to give an upper bound for the number of frequencies
of blocks of a given size for such double sequences (see [4]).

We will give in Section 7 a direct combinatorial proof of Theorem 14 in
the particular case min{n;,n,} = 2, and give an interpretation in terms of
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frequencies of binary codings: the frequencies of the factors of given length
of a coding of an irrational rotation with respect to a partition in two intervals
take ultimately at most 5 values.

6.3 THE 3d DISTANCE THEOREM

Let us consider another generalization of the three distance theorem, known
as the 3d distance theorem. This result, conjectured by Graham (see [17] and
[34]), was first proved by Chung and Graham in [18] and secondly by Liang
who gave a very nice proof in [37]. Geelen and Simpson remark in [29] that
their proof uses ideas from Liang’s proof.

THE 3d DISTANCE THEOREM. Assume we are given 0 < a < 1
irrational, 7, . ..,7vq real numbers and ny, ..., ng positive integers. The points
{na+y}, for 0 <n <mn and 1 <i < d, partition the unit circle into at
most ny + - -- + ny intervals, having at most 3d different lengths.

We will give a combinatorial proof of this result in Section 8 and express
the corresponding result for frequencies of codings of rotations, i.e., that the
frequencies of the factors of given length of a coding of a rotation by the
unit circle under a partition in d intervals take ultimately at most 3d values.

6.4 OTHER GENERALIZATIONS

Slater has studied in [50] the following generalization of the three gap
theorem, which should be compared with Theorem 13: there is a bounded
number of gaps between the successive values of the integers n such that
{n(n1,...,ma)} € C, where C is a closed convex region on the d-dimensional
torus and where 1,7;...,7, are rationally independent. However, Fraenkel
and Holzman prove Theorem 13 even in the case where «;, oy and 1 are
rationally independent.

Chevallier studies in [16] a d-generalization of the three distance theorem
to T¢, where intervals are replaced by Voronoi cells: the number of Voronoi
cells (up to isometries) is shown to be connected to the number of sides of
a Voronoi cell. The notion of continued fraction expansion is generalized by
properties of best approximation.

Finally, note the unsolved problems quoted in [29] concerning further
generalizations of the three distance theorem. For instance, an upper bound
for the number of distinct lengths in the partition of the unit circle by the points




126 P. ALESSANDRI AND V. BERTHE

kiog +kyar+ -+ kgay, for k; <mn;—1 and 1 <i<d is conjectured to be
of the form ¢, + HE:II n;, where c; is a constant independent of ny,...,n,.

7

7. FREQUENCIES OF FACTORS FOR BINARY CODINGS OF ROTATIONS

We will prove in this section the following result, which corresponds to
the case min{n;,n;} = 2 in Theorem 14. The idea of using a reflection of
the unit circle can also be found in the original proof in [29].

THEOREM 18. Let « be an irrational number in 10,1[, [ # 0 a
real number and n a non-zero integer. The set of points {0},{S},{a},
{B+a},....{na},{f+na} divides the circle into a finite number of
intervals, whose lengths take at most five values.

7.1 A COMBINATORIAL PROOF

We will prove Theorem 18 by introducing a coding of the rotation by
angle o with respect to the intervals of the unit circle bounded by the points
{0}, 48t Aa B+ a},....{na} {f +na}.

Let o« be an irrational number, 7 a non-zero real number and »n an
integer. Let I;,...,1, denote the intervals of the unit circle bounded by the
points {0}, {8}, {a}. {6+ a},...,{na} ,{f+na}. Let u = (u,)en be
the sequence defined on the alphabet £ = {a;,...,q,} as the coding of the
orbit of O under the rotation R of angle o« under the partition {/;,...,[,}:

Up = ar <= {na} €l.

The frequency of the letter @; in the sequence u is equal to the length of the
interval [, by uniform distribution of the sequence ({na}),en. We must now
prove that the frequencies of the letters of u take at most five values. Let us
consider the graph I'; of words of u of length 1. There is one edge from ay
to ay if Iy is the image of I, by the rotation R or if ;s contains {—a} or
{—a+ B}. Therefore the graph I'j contains p vertices (one for each letter)
and p + 2 edges: indeed, every vertex has only one leaving edge, except the
ones associated with the intervals containing {—a} or {n — a4+ S}, which
have two leaving edges (if both of these points belong to the same interval
I, then a; has three leaving edges and all the other intervals have only one
edge). In other words, we have p(1) = p and p(2) = p+2. As in the proof of
Theorem 6, this implies that there are at most 6 branches in I'; : indeed, each
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branch starts with a vertex with more than one entering edge (this provides at
most two branches) or just after a vertex with at least two Jeaving edges (at
most four branches are of this kind). We deduce from this that the frequencies
of the letters in u take at most 6 values. Let us prove that at least two
branches of I'; have the same frequency, which will complete the proof.

Let s denote the reflection of the circle defined by s: x — {8 +na — x}.
This reflection leaves invariant the endpoints of the intervals I;,...,I, and
thus induces a permutation o of the interiors of the intervals [;, which can
also be seen as a permutation of X. The length of I; is equal to the length
of 1,4 = s({y). The frequency of the letter a; is thus equal to the frequency
of the letter o(ax). Note that if a;a; is a factor of u, then o(a;)o(a;) is also
a factor. We deduce from this that if there is an edge in I'y from a; to g,
then there is also an edge from o(a;) to o(a;), or in other words, that I’
is invariant by the following action of o : the image of the vertex associated
with the letter a is equal to the vertex associated with o(a) and the image
of the edge a — b is the edge o(b) — o(a), i.e., each letter is replaced
by its image and the direction of every edge is changed. Furthermore, the
image of a branch is a branch. Let us prove that at most four branches of the
graph T’y are invariant by o. Let B = U; — U, — --- — U, be an invariant
branch of the graph. We have B = o(B) = o(U,) — --- — o(U;). We thus
get o(Uy) = Ugy1—¢.

e Suppose that there exists i such that U; = o(U;). Therefore the interval
[; must contain a fixed point for s. Since there are only two such fixed points,
at most two branches can satisfy this property.

e Let us suppose that U; # o(U;) for each 1 < i < g. We thus have ¢
even and o(U,/) = U,ry1. Let I (respectively, I’) be the closure of the
interval associated with U,,, (respectively, Ugja+1). We thus get s(/) = I'.
Furthermore, [’ is the image of I by the rotation R, because of the edge
Uy2 — Uyn+ 1. This implies that I’ contains a fixed point of the symmetry

soR~! which has at most two fixed points. Hence, at most two branches are
of this kind.

We have proved that at most four basic paths can be their own image
by o. Therefore, there exist among the six branches at least two different
branches, say A and B, such that B = g(A). Thus A and B have the same

frequency, which implies that there are at most five possible frequencies for
the letters of u.
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7.2 APPLICATION TO BINARY CODINGS

A more natural coding of the rotation R would have been with respect to
the partition [0, B[, [#,1[. The points {0},{6},{a},{B6+a},...,{na},
{B 4+ na} are the endpoints of the sets I(wy,...,w,), following the notation
of Section 2. But these sets might not be connected. Thus the frequencies of
factors of length n are the sums of the lengths of the connected components
of the sets I(wy,...,w,). Despite this disadvantage, this coding allows us to
deduce the following result from Lemma 3.

THEOREM 19. Let u be a coding of an irrational rotation with respect
to the partition into two intervals {[0, [, [5,1[}, where 0 < [ < 1. Let
nY denote the connectedness index of u. The frequencies of factors of given
length n > n'V' of u take at most 5 values. Furthermore, the set of factors
of u is stable by mirror image, i.e., if the word a,---a, is a factor of the
sequence u, then a,---a; is also a factor and furthermore, both words have
the same frequency.

Proof. It remains to prove the part of this theorem concerning the stability
by mirror image. Assume we are given a fixed positive integer n. Let s, be
the reflection of the circle defined by s,: x — {8 — (n — 1)a — x}. We have
sp(R™*(1,)) = R="H1H0(L) | for j =0, 1, following the previous notation. The
image of I(wi,..., wy,) by s, 18 I(w,,...,w;); they thus have the same

J bl

length, which gives the result.

REMARK. A study of the topology of the graph of words for a binary
coding of an irrational rotation of complexity satisfying ultimately p(n+ 1) —
p(n) =2 can be found in [24] or in [46].

8. THE 3d DISTANCE THEOREM

Following the idea of the above proof, let us give a combinatorial proof
of the 3d distance theorem.

THE 3d DISTANCE THEOREM. Assume we are given 0 < a < 1
irrational, i, ...,7vq real numbers and ny, . ..,ng positive integers. The points

{na+;}, for 0 <n <n and 1 <i<d, partition the unit circle into at
most ny + -+ -+ ng intervals, having at most 3d different lengths.
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Proof. Let us consider a coding of the rotation by angle o under the left-
closed and right-open partition of the unit circle bounded by all the points of
the form {noa + v}, for 0 <n<mn and 1 <i<d;let By,...,0,~1 denote
these consecutive points. The letter associated with the interval I = [ Bk, Brri1l
has a unique right extension, except when I; contains points of the form
{B; — a}. Suppose there are g > 2 points of this form; the associated letter
has g + 1 right extensions. Since there are at most ¢ points of this type, we
obtain p(2) — p(1) < d. We deduce from Theorem 6 that there are at most
3d different frequencies for the letters of the coding, i.e., there are at most
3d different lengths for the intervals 7.

REMARK. The start and finish intervals as introduced by Liang in his
proof in [37] correspond exactly to the beginning of the branches in the graph
of words. Indeed, Liang shows that any interval is associated either with a start
point {v;} (i.e., with one extension of a factor having more than one right
extension) or with a finish point {(n; — 1)« + ;} (i.e., with a factor having
more than one left extension). Counting the finish and start points defined
in [37] (there are 3d such points) is equivalent to counting the number of
branches in the graph of words.

As in the remark of the previous section, we can consider a coding of the
rotation by irrational angle 1 — o under the partition {[v;,v2[,....[va, M [}.

For such a coding, the 34 distance theorem can be rephrased as follows.

THEOREM 20. The frequencies of the factors of given length n > n'" of
a coding of a rotation by irrational angle under a partition in d intervals
take at most 3d values, where n'\V denotes the connectedness index.
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