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100 UMBERTO ZANNIER

Also, from (5), (10) and (11) we get (recalling our definition of degO0),

(12) {UO =t ia=p
Omy1 < max(oy, +d, pp) — p < max(op,,m+1)d—-1)+d—p.

Observe that we have o9 = (r +1)d —p = (r + )d — 2r +1) =
(d—2)r+(d—1)>d—1. Suppose that the inequality

(13) Om 2 (m+1)(d — 1)

is true for m = 0,...,M — 1, but not for m = M (possibly M = o0). Then
M > 1. Moreover, by (12) we have o, < o0 +d—p for m < M — 1,
whence
(14) om L og+md—p)=rd—(m+ 1)(p —d), for m < M.
Applying (13) and (14) with any m <M — 1, we get rd —(m+ 1)(p — d) >
(m+1)d—1), 1e. 2r(m+ 1) < rd. Therefore we have -
d
15 M< —.
(15) =3
Finally, apply (12) for m = M and observe that M < d/2 < r — 1, hence
Sy+r1 # 0 by the Claim. We obtain 0 < oy < M+ 1)d—-1)+d —p,
whence, comparing with (15),
{d2+3d—2 if d is even
2p < :
d*+2d—1  if d is odd.

This proves the theorem and more.  []

§3. REMARKS

(1) The method gives some information also in the case of a general
finite field F,. The same arguments as above work everywhere, on replacing
p by g, except that in the Claim we must now suppose that m < ry, where
p = 2ro+ 1. The final conclusion will be that d > min(rg, \/2g — (3/2)). This
is still sufficient to prove that equations y* = f(x) in F, have some solution,
provided p is sufficiently large compared to degf.

(2) The same method of proof produces a lower bound for the number
N’ of solutions of y* = f(x) such that y # 0. This bound is better than the
one which has been stated above, as a corollary of the theorem itself. To
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derive this bound we define S := {u € F, : f(u) is not a square in F,} and
put g(X) := [],cs (X —u). Then we observe that

gX)f X! — gOFX) = (X — X)S(X) .

This equation generalizes (5) above. At this point we follow completely the
above proof of the theorem. The differential operators will now be defined by

An()X) := gX)f (X0 ¢'(X)
— ((r + m+ D)gX)f' (X) + (m + Dg' X)f X)) p(X)

The conclusion will be that
4p—1)
d+4

Apply this result with af(X) in place of f(X), where a is a quadratic
nonresidue in F,. Then observe that the left side is just N'.

2degg > —2(d—-1).

(3) As announced in §1, we give a simple proof of the upper bound
d(p) < 2m(p) (defined in the introduction). Define N, as the number of
monic polynomials in F,[X] which are irreducible and have degree c. By
counting elements in the field F,c we easily find the following formula (which

goes back to Gauss), 1.e.
2N =",

rle

the sum running over positive divisors of c¢. For ¢ > 3 this easily implies

«

N N> % |

2<d<c
Let g(X) € F,[X] be monic, irreducible of degree d > 2 and consider the
vector whose entries are the Legendre symbols (9—1()‘—‘)), for u € F,. Since each
entry lies in {£1}, the number of possibilities for the vector is < 27. If
we let g run through all such polynomials, with 2 < d < ¢, the number of
possibilities for g will be > p“/c. For ¢ = m(p), this quantity exceeds 27 by
definition. Hence there will be distinct choices ¢(X), g.(X) for g(X), giving
rise to the same vector. This means that the polynomial f(X) := ¢1(X)g,(X)
assumes nonzero square values on the whole of F,. Moreover, since g;, g, are
distinct, monic and irreducible, f(X) has no square factor of positive degree.
Therefore we have d(p) < degf < 2m(p), as stated.
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