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Define m(p) as the minimal positive integer m such that p™ > m2?. We
have m(p) ~ plog2/logp. In §3.3, we shall show in a simple way that
d(p) < 2m(p) (perhaps an essentially optimal bound). Proving good lower
bounds for d(p) is more difficult. With the help of (1) it is easy to show
that d(p) > /p. This is essentially the best that we can extract from (1). In
fact, we have already remarked that (1) does not provide any information for
d >3+ ,/p. Here we give a short elementary proof of the following

THEOREM. We have d*(p) + 3d(p) > 2p + 2, hence d(p) > /2p — 3.

An immediate corollary is that the number of solutions in Flz7 of y* = f(x)
with y = 0, is at least /2p — % —d, provided f € F,[X] has degree d and
at least one simple root. In fact, let

S:={uecF, : f(u) is a nonzero square in F,}

and put g(X) := [[,cs(X — u). Then observe that if @ is a quadratic non-
residue mod p, the polynomial g(X)>af(X) assumes only square values on F,,,
without being a square. The theorem implies 2degg +d > /2p — % On the
other hand, 2degg is precisely the number of solutions we are considering.
We shall outline in §3.2 how to improve on this bound.

2. MAIN ARGUMENTS

We start with a simple example to outline the origin of the method. We give
a self-contained nine-line proof of the following claim: Let ¢ = 2r +1 > 3
be an odd prime power and let f € ¥,[X] be a cubic polynomial. Then the
equation y* = f(x) has at least one solution (x0,y0) € Fé

(Mordell [Mo, p. 41] had to invoke fairly complicated arguments even to
deal with the special case f(X) = X> +k.)

Assume the assertion false. Then f(u)" = —1 for all u € F,. Hence every
element of F, 1s a root of f(X)" 4+ 1 and so, identically,

(2) JX'+1=X?-X)S(X),

where § € F,[X] has degree 3r—q = r—1. Differentiating the equation we get
(3) rf X0FX) = (X~ X)8'(X) — S(X) .

Multiply (2) by rf'(X), (3) by £(X) and subtract to obtain
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4) rf'(X) = X7 = X)(f' XS — fX)S' (X)) + fFX)SX) -

Observe now that rf’(X)—f(X)S(X) has degree 3+deg S = r+2 and is divisible
by X9—X, in view of (4). Hence r+2 > g =2r+1,ie. r<1land ¢ <3. [

We now prove the theorem. Suppose that f € F,[X] (p > 3) has degree
d < p— 3, is not a square in F,[X] but assumes on F, only values
which are squares in F,. Write f(X) = aH?Zl fi(X)™, where a € F), the
fi € Fp[X] are distinct monic irreducible polynomials and the m; are positive
integers. Factoring out suitable even powers of the f;, we may assume?) that
1 <m; <2. Since d < p, there exists u € F, with f(u) # 0, so f(u) is a
nonzero square in F,. If all the m; were even, then a would be a nonzero
square in F, and f would be a square in F,[X], contrary to assumptions.
Therefore at least one of the m; is equal to 1, proving that f has at least a
simple root « (in some finite field).

Let now u € F,. Then, writing p = 2r + 1, either f(u) =0 or f(u)" = 1.
Therefore f(X)(f(X)" — 1) is divisible by X? — X. We write

(5) OO = fX) = (XP = X)S(X)
where S € F,[X] has degree (r + 1)d — p. Differentiate (5) to obtain
(6) (r+ D' X X)) = f(X) = (X = X)5'(X) — S(X).

Similarly to the above example, multiply (5) by (r+ 1)f’(X), (6) by f(X) and
subtract. The result is

(7)  fOOSE) = X7 = X)(FOS'(X) — (r + D (X)SX) — rfX)f'(X).

This equation is the first step in a recursion that we are going to construct.
Define the differential operators A, on F,[X] by setting, for ¢ € F,[X],

An()(X) := f) P (X) — (r + m + D' X)p(X) ,

and put, for m > 0,

{ SO(X) = S(X)7 Sm-}—l(X) = Am(Sm)(X)a
RO(X) = —f‘f(X)f/(X), Rm—i—](X) - Am—H(Rm)(X) .
Then (7) reads

9) JX)So(X) = (XP = X)$1(X) + Ro(X) .

8)

2) Note that when m; is even we cannot factor out fj(X)™ without danger of destroying
the properties of f(X). In fact we could have a priori f(u) = fi(u) = 0 for some u € F,, while

(f/f™)(u) could be a non-square in F,. It is however safe to factor out £~ 2.

k.‘..,_‘_..‘_. i i s
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We shall prove by induction that for all m > 0 we have
(10) (m + DfX)Sn(X) = X — X)Sni1 (X) + Ru(X) -
For m = 0 this is just (9). Assume (IO)V true and apply to both sides the
operator A,,. Note that A, (¢) = ¢pAL(Y) + ¢'f1p. We obtain
(m 4+ DfAu(S) + (m 4 Df f S = X = X)Anu(Sms1) = fSmy1 + An(Rin) -

Now use (10) to substitute for (m -+ 1)fS,, in the second term of the left side.
We get

(m + 1)me—H +f/((Xp —X)Sm—i—l +Rm) - (Xp —X)Am(Sm—H) _me—i-l + Am(Rm) )
whence

(m + 2)me+l — (Xp - X) (A771(S111+1) _f/Sm—{-l) + Am(Rm) —f/Rm .

Now, to conclude the inductive argument we have only to note that A,,(¢)—f"¢
equals just A, 1+1(9).

Recall that f has a simple root «. We continue by proving the following

CLAM. Let m < r. Then « cannot be a double root of S,,. In particular,
Su(X) £ 0 for m <.

For m = 0 this follows at once from (5). Suppose the claim true
for a certain m and assume by contradiction that « is a double root of
St 1(X) = f(X)S,,' (X) — (r + m+ Df'(X)S,,(X), where m+ 1 < r. Then, first
of all we would have (r+m+ 1)f'(«)S,,() = 0. This implies that S,,(a) = 0,
since f'(a) # 0 and since r +m + 1 < 2r =p — 1. Next, we compute

SnH—I/(X) :f/(X)Sm/(X) +f(X)SmN(X)
- (I” +m+ l)f//(X)Sm(X) o (l’ +m+ l)f/(X)Sm/(X) .
Since f(a) = Sp(a) = Sp+1' (@) = 0, we obtain that —(r+m)f'(a)S,,' () = 0.

As before, this implies that S,,’(a) = 0. Hence o would be a double root of
Sn(X), a contradiction to the inductive assumption.

As in the example, we shall conclude by comparison of degrees. Define
Pm = deg Rm; Om = deg S >

where we may agree that the zero polynomial has degree —oo. We have

po = 2d — 1 and we derive directly from the recursion formulae (8) that
Pm+1 S Pm af d—1 35 whence
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Also, from (5), (10) and (11) we get (recalling our definition of degO0),

(12) {UO =t ia=p
Omy1 < max(oy, +d, pp) — p < max(op,,m+1)d—-1)+d—p.

Observe that we have o9 = (r +1)d —p = (r + )d — 2r +1) =
(d—2)r+(d—1)>d—1. Suppose that the inequality

(13) Om 2 (m+1)(d — 1)

is true for m = 0,...,M — 1, but not for m = M (possibly M = o0). Then
M > 1. Moreover, by (12) we have o, < o0 +d—p for m < M — 1,
whence
(14) om L og+md—p)=rd—(m+ 1)(p —d), for m < M.
Applying (13) and (14) with any m <M — 1, we get rd —(m+ 1)(p — d) >
(m+1)d—1), 1e. 2r(m+ 1) < rd. Therefore we have -
d
15 M< —.
(15) =3
Finally, apply (12) for m = M and observe that M < d/2 < r — 1, hence
Sy+r1 # 0 by the Claim. We obtain 0 < oy < M+ 1)d—-1)+d —p,
whence, comparing with (15),
{d2+3d—2 if d is even
2p < :
d*+2d—1  if d is odd.

This proves the theorem and more.  []

§3. REMARKS

(1) The method gives some information also in the case of a general
finite field F,. The same arguments as above work everywhere, on replacing
p by g, except that in the Claim we must now suppose that m < ry, where
p = 2ro+ 1. The final conclusion will be that d > min(rg, \/2g — (3/2)). This
is still sufficient to prove that equations y* = f(x) in F, have some solution,
provided p is sufficiently large compared to degf.

(2) The same method of proof produces a lower bound for the number
N’ of solutions of y* = f(x) such that y # 0. This bound is better than the
one which has been stated above, as a corollary of the theorem itself. To
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