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POLYNOMIALS MODULO p WHOSE VALUES ARE SQUARES
(ELEMENTARY IMPROVEMENTS
ON SOME CONSEQUENCES OF WEIL'S BOUNDS)

by Umberto ZANNIER

ABSTRACT. We introduce a simple elementary method to prove lower bounds for
the number of solutions of congruences of the type y* = f(x) (mod p). When the
degree d of f does not exceed +/2p —(3/2), the estimates are nontrivial. In particular,
for /2p — (3/2) > d > 3 + /p we improve on what follows from the Riemann
Hypothesis for a hyperelliptic function field. We illustrate the method by proving a
lower bound for the minimal degree of a non-square polynomial all of whose values
on F, are squares in F,.

§1. INTRODUCTION

The present note arose with the author’s attempt to describe to undergrad-
uate students a proof ‘as quick as possible’ of the fact that congruences like
y? = f(x) (mod p) usually have some solution').

Concerning such congruences, many methods and results are offered by
the literature. We may mention e.g. a method based on Gaussian sums ([Mo,
p.39]) which works in special cases. Also, we have of course Hasse’s Theorem
in case f has degree 3 (see [Sil] for a recent exposition) and its far reaching
generalization provided by Weil’s Riemann Hypothesis for curves over finite
fields.

We recall briefly that Weil’s results imply in particular an estimate for
the number of F,-rational points of an absolutely irreducible nonsingular
projective curve defined over F,. To apply the theorem to our hyperelliptic
affine curve ¥? = f(X), where f(X) = aoX? + - + a; € F,[X] has

.1) This is of course useful in testing whether a given hyperelliptic affine curve over Q has
points locally everywhere, i.e. over all Q,.

ey
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degree d, one must take into account a nonsingular projective model. The
conclusion 1s as follows. Suppose that f has no repeated roots and define
N :=#{(x,y) € Ffj .y =f(x)}. Then

IN —q| < (d—1)/q if d is odd
(1) IN—g+1] <(d—-2)/q if d is even and aq is a square in F,
IN—qg—1] <(d—2)/q otherwise.

Weil’s original proof [We] was quite sophisticated. Subsequently, elemen-
tary proofs were found independently by Bombieri and Schmidt, both argu-
ments stemming from a method by Stepanov, who was in fact able to treat the
equations we are considering here (see the survey [Bo] and the book [Sch]).
Also, we point out the work by Stark [St] on hyperelliptic curves and the
work by Stohr and Voloch [SV] (which contains the full Weil bound); in both
papers certain improvements on Weil’s results are obtained in some cases.

The mentioned proofs, while more elementary than Weil’s, are however
quite delicate. Here we present a very simple method which seems new.
Though it does not imply (1), it leads with minimal effort to the existence of
solutions as soon as the characteristic exceeds some function of the degree.
(See e.g. the beginning of §2 for a short example.)

Actually, in some cases we may go beyond (1). Note that (1) becomes
trivial when d > 3 +,/q. Our method, in case ¢ is a prime, gives something
nontrivial provided d < +/2g —(3/2). (Stark, too, sometimes improves on (1),
but he requires d < 3+ ./q.) The present proofs are similar to those of Stark,
in that they use the iteration of certain differential operators. However we do
not need to construct auxiliary functions (as in Stark’s arguments) and our
recursion formulae are extremely simple. It is quite possible that the method
falls into the much more general and conceptual setting developed by Stohr
and Voloch (who remark that their ideas may lead to improvements on Weil
in many special cases); however we have not attempted to carry out such a
reconstruction.

To illustrate the method, we focus on the following simply stated problem
and postpone to §3 some detail for a more general application. Let p be
a prime number and define d(p) as the least positive integer d with the
following property :

(%) There exists a polynomial f € F,[X] of degree d, not the square of
a polynomial in F,[X], such that its values on ¥, are all squares in F,.

What sort of function is d(p) ?
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Define m(p) as the minimal positive integer m such that p™ > m2?. We
have m(p) ~ plog2/logp. In §3.3, we shall show in a simple way that
d(p) < 2m(p) (perhaps an essentially optimal bound). Proving good lower
bounds for d(p) is more difficult. With the help of (1) it is easy to show
that d(p) > /p. This is essentially the best that we can extract from (1). In
fact, we have already remarked that (1) does not provide any information for
d >3+ ,/p. Here we give a short elementary proof of the following

THEOREM. We have d*(p) + 3d(p) > 2p + 2, hence d(p) > /2p — 3.

An immediate corollary is that the number of solutions in Flz7 of y* = f(x)
with y = 0, is at least /2p — % —d, provided f € F,[X] has degree d and
at least one simple root. In fact, let

S:={uecF, : f(u) is a nonzero square in F,}

and put g(X) := [[,cs(X — u). Then observe that if @ is a quadratic non-
residue mod p, the polynomial g(X)>af(X) assumes only square values on F,,,
without being a square. The theorem implies 2degg +d > /2p — % On the
other hand, 2degg is precisely the number of solutions we are considering.
We shall outline in §3.2 how to improve on this bound.

2. MAIN ARGUMENTS

We start with a simple example to outline the origin of the method. We give
a self-contained nine-line proof of the following claim: Let ¢ = 2r +1 > 3
be an odd prime power and let f € ¥,[X] be a cubic polynomial. Then the
equation y* = f(x) has at least one solution (x0,y0) € Fé

(Mordell [Mo, p. 41] had to invoke fairly complicated arguments even to
deal with the special case f(X) = X> +k.)

Assume the assertion false. Then f(u)" = —1 for all u € F,. Hence every
element of F, 1s a root of f(X)" 4+ 1 and so, identically,

(2) JX'+1=X?-X)S(X),

where § € F,[X] has degree 3r—q = r—1. Differentiating the equation we get
(3) rf X0FX) = (X~ X)8'(X) — S(X) .

Multiply (2) by rf'(X), (3) by £(X) and subtract to obtain
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4) rf'(X) = X7 = X)(f' XS — fX)S' (X)) + fFX)SX) -

Observe now that rf’(X)—f(X)S(X) has degree 3+deg S = r+2 and is divisible
by X9—X, in view of (4). Hence r+2 > g =2r+1,ie. r<1land ¢ <3. [

We now prove the theorem. Suppose that f € F,[X] (p > 3) has degree
d < p— 3, is not a square in F,[X] but assumes on F, only values
which are squares in F,. Write f(X) = aH?Zl fi(X)™, where a € F), the
fi € Fp[X] are distinct monic irreducible polynomials and the m; are positive
integers. Factoring out suitable even powers of the f;, we may assume?) that
1 <m; <2. Since d < p, there exists u € F, with f(u) # 0, so f(u) is a
nonzero square in F,. If all the m; were even, then a would be a nonzero
square in F, and f would be a square in F,[X], contrary to assumptions.
Therefore at least one of the m; is equal to 1, proving that f has at least a
simple root « (in some finite field).

Let now u € F,. Then, writing p = 2r + 1, either f(u) =0 or f(u)" = 1.
Therefore f(X)(f(X)" — 1) is divisible by X? — X. We write

(5) OO = fX) = (XP = X)S(X)
where S € F,[X] has degree (r + 1)d — p. Differentiate (5) to obtain
(6) (r+ D' X X)) = f(X) = (X = X)5'(X) — S(X).

Similarly to the above example, multiply (5) by (r+ 1)f’(X), (6) by f(X) and
subtract. The result is

(7)  fOOSE) = X7 = X)(FOS'(X) — (r + D (X)SX) — rfX)f'(X).

This equation is the first step in a recursion that we are going to construct.
Define the differential operators A, on F,[X] by setting, for ¢ € F,[X],

An()(X) := f) P (X) — (r + m + D' X)p(X) ,

and put, for m > 0,

{ SO(X) = S(X)7 Sm-}—l(X) = Am(Sm)(X)a
RO(X) = —f‘f(X)f/(X), Rm—i—](X) - Am—H(Rm)(X) .
Then (7) reads

9) JX)So(X) = (XP = X)$1(X) + Ro(X) .

8)

2) Note that when m; is even we cannot factor out fj(X)™ without danger of destroying
the properties of f(X). In fact we could have a priori f(u) = fi(u) = 0 for some u € F,, while

(f/f™)(u) could be a non-square in F,. It is however safe to factor out £~ 2.

k.‘..,_‘_..‘_. i i s
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We shall prove by induction that for all m > 0 we have
(10) (m + DfX)Sn(X) = X — X)Sni1 (X) + Ru(X) -
For m = 0 this is just (9). Assume (IO)V true and apply to both sides the
operator A,,. Note that A, (¢) = ¢pAL(Y) + ¢'f1p. We obtain
(m 4+ DfAu(S) + (m 4 Df f S = X = X)Anu(Sms1) = fSmy1 + An(Rin) -

Now use (10) to substitute for (m -+ 1)fS,, in the second term of the left side.
We get

(m + 1)me—H +f/((Xp —X)Sm—i—l +Rm) - (Xp —X)Am(Sm—H) _me—i-l + Am(Rm) )
whence

(m + 2)me+l — (Xp - X) (A771(S111+1) _f/Sm—{-l) + Am(Rm) —f/Rm .

Now, to conclude the inductive argument we have only to note that A,,(¢)—f"¢
equals just A, 1+1(9).

Recall that f has a simple root «. We continue by proving the following

CLAM. Let m < r. Then « cannot be a double root of S,,. In particular,
Su(X) £ 0 for m <.

For m = 0 this follows at once from (5). Suppose the claim true
for a certain m and assume by contradiction that « is a double root of
St 1(X) = f(X)S,,' (X) — (r + m+ Df'(X)S,,(X), where m+ 1 < r. Then, first
of all we would have (r+m+ 1)f'(«)S,,() = 0. This implies that S,,(a) = 0,
since f'(a) # 0 and since r +m + 1 < 2r =p — 1. Next, we compute

SnH—I/(X) :f/(X)Sm/(X) +f(X)SmN(X)
- (I” +m+ l)f//(X)Sm(X) o (l’ +m+ l)f/(X)Sm/(X) .
Since f(a) = Sp(a) = Sp+1' (@) = 0, we obtain that —(r+m)f'(a)S,,' () = 0.

As before, this implies that S,,’(a) = 0. Hence o would be a double root of
Sn(X), a contradiction to the inductive assumption.

As in the example, we shall conclude by comparison of degrees. Define
Pm = deg Rm; Om = deg S >

where we may agree that the zero polynomial has degree —oo. We have

po = 2d — 1 and we derive directly from the recursion formulae (8) that
Pm+1 S Pm af d—1 35 whence
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Also, from (5), (10) and (11) we get (recalling our definition of degO0),

(12) {UO =t ia=p
Omy1 < max(oy, +d, pp) — p < max(op,,m+1)d—-1)+d—p.

Observe that we have o9 = (r +1)d —p = (r + )d — 2r +1) =
(d—2)r+(d—1)>d—1. Suppose that the inequality

(13) Om 2 (m+1)(d — 1)

is true for m = 0,...,M — 1, but not for m = M (possibly M = o0). Then
M > 1. Moreover, by (12) we have o, < o0 +d—p for m < M — 1,
whence
(14) om L og+md—p)=rd—(m+ 1)(p —d), for m < M.
Applying (13) and (14) with any m <M — 1, we get rd —(m+ 1)(p — d) >
(m+1)d—1), 1e. 2r(m+ 1) < rd. Therefore we have -
d
15 M< —.
(15) =3
Finally, apply (12) for m = M and observe that M < d/2 < r — 1, hence
Sy+r1 # 0 by the Claim. We obtain 0 < oy < M+ 1)d—-1)+d —p,
whence, comparing with (15),
{d2+3d—2 if d is even
2p < :
d*+2d—1  if d is odd.

This proves the theorem and more.  []

§3. REMARKS

(1) The method gives some information also in the case of a general
finite field F,. The same arguments as above work everywhere, on replacing
p by g, except that in the Claim we must now suppose that m < ry, where
p = 2ro+ 1. The final conclusion will be that d > min(rg, \/2g — (3/2)). This
is still sufficient to prove that equations y* = f(x) in F, have some solution,
provided p is sufficiently large compared to degf.

(2) The same method of proof produces a lower bound for the number
N’ of solutions of y* = f(x) such that y # 0. This bound is better than the
one which has been stated above, as a corollary of the theorem itself. To
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derive this bound we define S := {u € F, : f(u) is not a square in F,} and
put g(X) := [],cs (X —u). Then we observe that

gX)f X! — gOFX) = (X — X)S(X) .

This equation generalizes (5) above. At this point we follow completely the
above proof of the theorem. The differential operators will now be defined by

An()X) := gX)f (X0 ¢'(X)
— ((r + m+ D)gX)f' (X) + (m + Dg' X)f X)) p(X)

The conclusion will be that
4p—1)
d+4

Apply this result with af(X) in place of f(X), where a is a quadratic
nonresidue in F,. Then observe that the left side is just N'.

2degg > —2(d—-1).

(3) As announced in §1, we give a simple proof of the upper bound
d(p) < 2m(p) (defined in the introduction). Define N, as the number of
monic polynomials in F,[X] which are irreducible and have degree c. By
counting elements in the field F,c we easily find the following formula (which

goes back to Gauss), 1.e.
2N =",

rle

the sum running over positive divisors of c¢. For ¢ > 3 this easily implies

«

N N> % |

2<d<c
Let g(X) € F,[X] be monic, irreducible of degree d > 2 and consider the
vector whose entries are the Legendre symbols (9—1()‘—‘)), for u € F,. Since each
entry lies in {£1}, the number of possibilities for the vector is < 27. If
we let g run through all such polynomials, with 2 < d < ¢, the number of
possibilities for g will be > p“/c. For ¢ = m(p), this quantity exceeds 27 by
definition. Hence there will be distinct choices ¢(X), g.(X) for g(X), giving
rise to the same vector. This means that the polynomial f(X) := ¢1(X)g,(X)
assumes nonzero square values on the whole of F,. Moreover, since g;, g, are
distinct, monic and irreducible, f(X) has no square factor of positive degree.
Therefore we have d(p) < degf < 2m(p), as stated.
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