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However, SL2(k) does not leave any non-zero element of V2 stable, so V2 is

not fully reducible.

This does not rule out a positive answer to problem I, but if so, another

approach had to be devised. D. Mumford proposed a weaker notion than

full reducibility, now called geometric reductivity : if C is an invariant one-

dimensional subspace, there exists a homogeneous G-invariant hypersurface
not containing C (in the case of full reducibility it could be a hyperplane). Then

Nagata showed that this condition indeed implies the finite generation of the

algebra of invariants. Later geometric reductivity was proved by C.S. Seshadri

for SL2(k) and by W. Haboush in general.
Even over C, the problems of full reducibility and of the determination of

irreducible representations resurfaced not for SL2(C), but for its generalization
as a Kac-Moody Lie algebra, or for the deformation of its Lie algebra as a

"quantum group". This has led to further problems and to more contacts with
mathematical physics.

Appendix : More on some proofs of full reducibility

We give here more technical details on the proofs of full reducibility for
sl2(C) or SL2(C) due to Cartan, Fano and Casimir, assuming some familiarity
with Lie algebras and algebraic geometry. We let g stand for sl2(C),

12. Lie algebra proof:

12.1. Let

n oi ro r II
"
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be the familiar basis of q. It satisfies the relations

(2) [Ä, e] 2e [hj] -2f [ej] -h.
The elements h. e.f define one-parameter subgroups (t G R)

** Co e~) <"=(0 I) '"OS)-
By letting them act on functions of x,y and taking the derivatives for 0,
we get expressions of h,ejas differential operators, namely

(3) h x.dx-y.dy,e=xf=-y.dx.
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Let E be a representation space for g and Ec (c G C) the eigenspace for h

with eigenvalue c. Then (2) implies

(4) e.Ec C Ec+2 f.Ec C £c_2

More generally, if (h — c .I)q .v 0 for some q > 1, then

(5) (Ä - (c + 2) ./)* g v - 0 (Ä - (c - 2) .If .f. v 0.

12.2. We now consider Pm. It has a basis ./ (i 0,... ,m) and

xm-z y *s an eigenvector for h, with eigenvalue m — 2i. Let

(1) vm-2i xm~l • / (i 0,..., m).

The vm_2ï form a basis of and we have :

(2) h vm_2/ {m- 2i)vm—2i (i 0,..., m).

A simple computation, using 12.1(2), (3), yields

(3) f • Vm—2i — (J T 1) Vm—2i—2

(I 0,..., m),
(4) e vm-2i (jn - i + 1) um_2;+2

with the understanding that

(5) VmJr2 — V—m—2 — 0 •

(3) and (4) imply

(6) f .e. vm-2i -Km - i + l>m-2i

(7) e ./. um_2,- (i + 1 )(m - z>m-2/ •

Remarks, (a) The eigenvalues of h in Vm are integers. By consideration

of a Jordan-Holder series, it follows that this is true for any finite dimensional

representation.

(b) In P(Vm) the rational normal curve occurring in Lie's description of
the irreducible projective representations of SL2(C) (see §2) is the orbit of the

point representing the line spanned by xm. This is also the unique fixed point
in P(Vm) of the group U generated by e, i.e. the group of upper triangular
unipotent (eigenvalues equal to one) matrices. It is therefore also the locus of
the fixed points of the conjugates of U in SL2(C), and each such conjugate
has a unique fixed point in P(Pm).
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12.3. Note that 12.2(5) is a consequence of 12.2(4) and of the commutation

relations 12.1(1). A similar argument shows more generally that if is is a

representation of g and v e E satisfies the conditions

(1) e.v 0, h.v c.v (ce C),

then the elements f v (i > 0) span a finite dimensional g-submodule F. In

particular C. v is the eigenspace with eigenvalue c and all other eigenvalues

of h in F are of the form c — q (q G N, q > 1).

12.4. First proof of full reducibility. We use 12.3, which is contained in

[Crl] and the two remarks a) and b) of §3. This reduces the proof of full
reducibility of a g -module E to the case of a short exact sequence

(1) (m < n).

Let m < n. Then h has an eigenvector v e E with eigenvalue n, which does

not belong to Vm. It is annihilated by e, since there are no weights > n in
Vm or Vn, hence in E. By 12.3, it generates a g-submodule distinct from
Vm, which must therefore be a g-invariant complement to Vm.

Let now m — n. Let {vm-2;} (i 0,...,m) be the basis of Vm, viewed
as subspace of E, constructed in 12.2. Let v'm be a vector which maps under

7r onto the similar basis element of the quotient and let v'm_2i v'm.

Then the v'm_2i project onto the basis of E/Vm defined in 12.2. There exists

a e C such that

(2) h v'm m v'm + a vm

We claim it suffices to show that a 0. Indeed, in that case, 12.3 again
implies that v'm generates a g -submodule distinct from Vm, hence a supplement
to Vm.

There remains to prove that a 0. We claim first

(3) h. v'm_2i(m - 2 i)v'm_2i+ a. um_2>

For i 0, this is (2). Assuming it is proved for i, we obtain (3) for i + 1

by applying / to both sides and using 12.1(2), 12.2(3).
For i > 1, we have, by 12.1(2) and 12.2(3)

(4) i.e. vm_2J — —e.f. vm_2i+2 ~f e • L77-2/+2 + ^ • vm-2i+2 •

By (3) and 12.2(6), this yields

(5) i.e. v'm_2i « i(m - i+ 1 <_2;+2 + a wm_2/+2

If we apply (5) for im + 1, we get a v-,„ 0, hence 0.
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Remark. This last computation is contained in [CW] and also, unknown
to the authors, in [Crl]. As we saw, the proof for m < n reduces immediately
to 12.3, and by b) in §3 it suffices to consider that case when m ^ n. A direct

computation along the lines of the previous proof is longer if m > n (see

12.5). Cartan performs it even for a Jordan-Holder series of any length, which
leads to a rather complicated argument. By using his operator, Casimir did
not have to make any distinction between the cases m < n and m > n.

12.5. To give a better idea of Cartan's proof, we discuss the case m > n

directly, without reducing to m < n.
We let v'n and v'n_2i (i > 0) be as before. Note first that if n and m

have different parities, then Vn and Vm have no common eigenvalue for h.
In particular h has no element of weight n + 2 in E and the eigenspace for
n is one-dimensional, hence spanned by v'n. Again, by 12.3, v'n generates a

complementary g-module. So we assume that m n mod 2. As before, the

whole point is to find v'n satisfying the condition 12.3(1), for c n.
As above, there is a constant a such that

(1) h.vrn n v'n + a.vn.

We want to prove v'n may be chosen so that a — 0. As in 12.4, we see that

The weights in Vn are contained in [«,—«], so the projection of /. v'_n in
Vn is zero and we have, for some constant c,

Let v'l « v'n — c. vn and following 12.2(4), define v\[_Tl inductively by the

relation

(2) h v'n-2i (n-20. v'n_2i + a • «/î-2 > 0)

(3) / vLn C <U_„_2

(4) v"-2 i ~i •/ • vn-2i+2

By induction on /, we see that

(5) h. v"_2i-(n-20 • v"+ a. v„_2/

and also, in view of (3), that

(6) f .V"_n -C.f.V^n 0

For i m n, the equality (5) gives

(J) h v'!_n ~n v'Ln + a
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Apply now / to both sides and recall that /. h h./ + 2/. In view of (6)

and 12.2(3) for m n, we get

(8) a (ti + 1). ^-,2-2 0 •

But n < m so V-n-i_ ^ 0, whence a — 0.

We may therefore assume that +( is an eigenvector of h. There is no

eigenspace for h with eigenvalue 72 + 2 in V'n, hence

(9) e v'n b. vn+2 (b eC).

By 12.2(4), for i (in - n)/2 (recall that m ee n (2)), we get

(10) e.Vn= ((722 + 72 + 2)/2) Vn+2

therefore

(11) wn v'n - b{(m + 72 + 2)/2)
1

vn

satisfies the conditions

(12) h.wn=n.wn, e.tüw 0,

so that, by 12.3, g. wm is a copy of Vn complementary to Vm.

13. Fano'S proof:

It deals with projective transformations and uses algebraic geometry. Given

a finite dimensional vector space F over C, we let P(F) be the projective

space of one-dimensional subspace of F. If F is of dimension 72, P(F) is

isomorphic to P„_i(C).

13.1. The proof is contained in §§7, 8, 9 of [F]. §9 shows how to reduce

it to the case considered in §3, a), b), that is, to the case of a short exact

sequence 12.4(1) with m > n, but expressed in projective language, namely:
The space P P(E) contains a minimal irreducible invariant projective

subspace W P(V)„) of dimension m and the induced projective representation
in the space W' of projective (772+ l)-subspaces containing W is irreducible.

The problem is then to find an invariant projective subspace D not meeting
W. If so, it has necessarily dimension n and P(E) is the join of W and D.
Moreover, by the remark b) in §3, it may be assumed that m > n. Let us

write N for the dimension of P. Then N 777 + 72 + 1 and m > (N — l)/2.
As in 12.2(b), U is the one-parameter subgroup of G SL2(C) generated

by e. Its fixed point set is also the subspace Ee of E annihilated by e. Since
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U is unipotent, any line invariant under U is pointwise fixed, so that the

projective subspace P(Eu) associated to Eu is also the fixed point set P(E)u
of U on P(E). Similarly, it may be identified with the set P(E)e of zeros of
the vector field on P(E) defined by the action of U.

In §7, Fano proves that P(E)e is a projective line. I am not sure I understand

his argument, so I shall revert to the linear setup. As just pointed out, we
have to show that Ee is two-dimensional.

In Vm and Vn it is one-dimensional, so the exact sequence 12.4(1) shows

that dimEe <2. As in §3, let E* be the contragredient representation to

E. Then E*e is the dual space to E/eE so it is equivalent to prove that

dim E*' 2. Therefore we may assume that m < n (our assumption earlier,
but not the one of Fano). Fix a vector v' G E projecting onto a highest weight
vector in Vn. It is an eigenvector of h if m < n, is annihilated by (h — n. I)2

otherwise, and in both cases is annihilated by e (see 12.1 (4), (5)).

13.2. The next and main part of Fano's argument depends on some

properties of the "rational normal scrolls", which we now recall (see [GH],

p. 522-527). Assume N >2 and let Z be a surface in P, not contained in

any projective subspace. Then its degree is at least N—l ([GH], p. 173). Those

of degree N—l have been classified, up to projective transformations ([GH],
loc.cit.). Only one is not ruled, the Veronese embedding of P2(C) in Ps(C).

The others are the rational normal scrolls Sa^ (a + b N — 1), obtained

in the following way: Fix two independent projective subspaces A,B of
dimension a.b. Then P — A *B is the join of A and B. Let CA (resp. CB)
be a rational normal curve in A (resp. B) and </? : ÇA —> CB an isomorphism.
Then Sa,b is the space of the lines D(x,ip(x))(x G Ca)- If a > 0, but b 0,
then CB is a point, cp maps CA onto a point and Sa,b is the cone over CA

with vertex CB. It has a unique singular point, namely CB and this is the

only case where Sa,b is not smooth ([GH], p. 525).

A rational curve in Sa^ which cuts every line D(x, cp(x)) in exactly one

point is called a directrix. By construction CA (resp. CB) is a directrix of
degree a (resp. b). The main result used by Fano is that if a > b, then CB is

the unique directrix of degree b ([GH], p. 525). Fano deduces this essentially
from an earlier result of C. Segre [Se].

If a b, then we may identify A to B by a map tp which takes CA to

CB. It is clear that in that case SU)b SaA P^C) x P](C).

13.3. We now come back to the situation in 13.1. In W there is exactly

one rational normal curve C stable under G. The zero set P(E)e of e is a
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line (13.1) and P(£)e (1 C consists of one point, namely, W. Let Z be the

set of transforms g • P(E)e of P(E)e, (g G G). Since P(E)e is stable under

the upper triangular group B and G/B is complete (in fact a smooth rational

curve), Z is a projective subvariety, a G-stable ruled surface. We first dispose

of a special case. The line g.P(E)e is the fixed point set of the subgroup

9U g .U. g~l, conjugate to G by g. Assume that two distinct such lines

have a common point. It would then be fixed by two distinct conjugates of U.

But it is immediate that two such subgroups generate G, so that there would
be a fixed point D of G in P(£), necessarily outside W. Then P(E) would
be the join of W and D, and we would be through. From now on, we assume

that the lines g. ¥(E)e either coincide or are disjoint. We want to prove that

Z has degree N — 1 in P(E). First we claim that it is not contained in any
hyperplane F of P(£). Indeed, if it were, it would be contained in a G-stable

proper subspace F, the intersection of the transforms of Y. The subspace F
would contain W properly, which would contradict the irreducibility of the

quotient representation in P('Vn). The degree of Z is therefore at least N — 1

([GH], p. 173-4). There remains to show that it is < (N — 1).

Let C' C W1 be the closed orbit of G, which plays the same role as C

in W. In particular, it has degree n. Let now F be a generic hyperplane of
P(E) among those containing W. Viewed as a hyperplane in W7, it cuts C'
in n distinct points Qt (i 1,...,«). Let G/ be the conjugate of G which
fixes Qi (see 12.2, (b)). The intersection ZH Y is a (reducible) curve. We
want to prove it has degree N - 1 in F. We claim first

(1) F n Z C U A U • •. U Dn (A P(E)Ui),

where the Dt are disjoint projective lines, each intersecting C at exactly one
point.

First, by construction, C C Z n F, in fact C =W Let ieZHF,
x It belongs to some line Dg g .V(E)e. The line Dg also contains
g.We, which belongs to Z H F, too. Therefore Dg C F, and of course
Dg C Z, hence Z H F is the union of C and some of the lines Dg. The line
Dg spans with W a projective subspace of dimension equal to dim W + 1,
which represents a point of Wf, fixed under 9U. It belongs therefore to F if
and only 9U is one of the G/, i.e. if and only if Dg is one of the A's and
(1) follows.

Since C has degree m dim W in W, it follows that ZH F is a curve of
degree m + n in F, hence Z is a surface of degree at most m + n N - 1

in P(£).
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Thus Z is a ruled surface, not contained in a hyperplane, of smallest

possible degree. It is therefore a "rational normal scroll" (13.2). It is isomorphic
to Saj where a — dim W m and b — N — 1— a n.

Recall that we have reduced ourselves to the case a > b > 0. Assume

first a > b. Then, (see 13.2), Z contains a unique directrix of degree b. It is

a normal curve in a b -dimensional subspace, which must be invariant under

G, since Z is. This provides the complementary subspace to W.

Let now m n. Then (13.2), Z C x C is a product of two copies of
P^C), where C is, as before, a G-stable rational normal curve in W and

C' P(E)e. The transforms g J*(E)e of C' are the lines {c} x C' {c G C).
The lines Cy C x {y} (y E C) are "directrices". We claim that they

are all invariant under G. Clearly, the intersection number Cy • Cz is zero if
y 7^ z (jy, z G C'). Let g E G. Since it is connected to the identity, we have

then also (g Cy) • Cz 0, therefore g Cy 0 Cz 0 unless g .Cy Cz. Since

g. Cy must meet at least one Cz, we have g .Cy Cz for some z and we see

that G permutes the curves {Cy} (y E C'). Each such curve contains a fixed

point of e, hence of I/. Therefore Cy is stable under C. Now the subgroup
H of G leaving each curve Cy stable is a normal subgroup, which is ^ {1}
since it contains U. But G is a simple Lie group, therefore H G, which

proves our contention. Any curve Cy is a rational normal curve in a subspace

Wy which is hecessarily G-stable. This provides infinitely many G-invariant

subspaces and concludes the proof.

Remark. Let us compare the orders of the steps in the proofs of Cartan

and of Fano. In 12.4 and 12.5 the first item of business is to show that the

action of h on a certain h -stable two-dimensional subspace is diagonalisable.
That space is Ee in 12.4, and subsequently shown to be Ee in 12.5. Once a

new eigenvector of h annihilated by e is found, 12.3 can be used. In Fano,

the first step is to show that Ee is two-dimensional or rather, equivalently,
that P(E)e is a projective line. There, the analogue of the first step of Cartan

would be to prove the existence of two fixed points on P(E)e of h, or of the

group H — {eth} generated by h. One is We. In the generic case m > n,
Fano's argument may also be viewed as a search for this second fixed point:
it is the intersection of P(Ef with the (unique) directrix Cb However, since

the proof provides directly the G-orbit Cb of that second fixed point, the

argument is not phrased in that way.

I am grateful to Thierry Vust for a careful reading of the manuscript,
which led to a number of corrections and clarifications.
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