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FULL REDUCIBILITY AND INVARIANTS FOR SL,(C)

by Armand BOREL

1. Let G be a group, V a finite dimensional vector space over a
commutative field k (mostly C in this lecture), n the dimension of V and
7 a representation of G in V i.e. a homomorphism G — GL(V) of G into
the group GL(V) of invertible linear transformations of V. The choice of a
basis of V provides an isomorphism of V with k", of GL(V) with the group
GL,(k) of n x n invertible matrices with coefficients in k£, and a realization
of 7 as a matrix representation :

(1) g (@) = (19h) < -

Two main problems pertaining to this situation were considered already in the
19th century, in various special cases, for k = C.

I) INVARIANTS. Let k[V] be the space of polynomials on V with coef-
ficients in k£ and k[V], (m € N) the space of homogeneous polynomials of
degree m. The group G acts via w on k[V] by the rule

goPw)=P(n(g)~".v) (WEV,Peck[V], g€ G)

leaving each k[V], stable. [The argument on the right-hand. side will usually
be written g~!'.v if there is no ambiguity about 7.]

Let £[V]® be the space of polynomials which are invariant under G, i.e.
which are constant on the orbits of G. It is an algebra over k and the (first)
problem of invariant theory is to know whether it is finitely generated, as a

k-algebra.
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II) FULL REDUCIBILITY. The representation (7, V) is said to be reducible
if there exists a G-invariant subspace W # {0},V, and fully or completely
reducible if any G-invariant subspace has a G-invariant complement. If so,
V' can be written as a direct sum of G-invariant irreducible subspaces. One
1s interested in groups having classes of fully reducible representations or in
finding families of groups all of whose representations over a given k are
fully reducible.

In this lecture, I shall discuss the history of these two problems mainly for
one group, namely the group SL,(C) of 2 x 2 complex invertible matrices
of determinant one, for k = C and holomorphic representations, i.e. in which
the m(g); in (1) are holomorphic functions in the entries of g. Occasionally,
some remarks will be made on other groups, to put certain results in a more
general context, or for historical reasons, but our main focus of attention will
still be SL,(C). Even so restricted, this history is surprisingly complicated,
in part because the principal contributors were sometimes not aware of other
work already done. In one case, it seems even that one of them had forgotten
some of his own.

2. The irreducible representations of SL,(C) were determined by S. Lie.
As we know, there is for each m € N, up to equivalence, one representation
of degree m—+1 in the space, to be denoted V,,, of homogeneous polynomials
of degree m on C?, acted upon via the identity representation of SL,(C).

In fact, S. Lie formulated his result differently, more geometrically [LE]. For
him, a representation is not a linear one, but a projective one, 1.e. a homomor-
phism into the group of projective transformations of some complex projective
space P,(C). As usual, P,(C) is viewed as the quotient of C™*' — {0} by
dilations. This identifies the group AutP,,(C) of projective transformations of
P, (C) with the quotient GL,,(C)/C* of GL,;(C) by the non-zero multi-
ples of the identity matrix, or also with PSL,.;(C) = SL,,11(C)/center, i.e.
modulo the group of multiples ¢.Id of the identity matrix, where ¢™*! = 1.
Let B be the group of upper triangular matrices in SL,(C). The quotient
SL,(C)/B = C is a smooth complete rational curve, i.e. a copy of P;(C).
The group B is solvable, connected, therefore, by Lie’s theorem it has a fixed
point in any projective representation and so, if this point is not fixed under
G, its orbit is a copy of C. Lie looks for the cases where such a C is
“as curved as possible” (“moglichst gekrimmt”) meaning, not contained in a
proper projective subspace. It is also a fact, implicitly assumed by Lie, that the
action of SL,(C) on such a curve is always induced by projective transforma-
tions of the ambient projective space. Therefore the search of smooth rational
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complete curves in projective spaces which are “as curved as possible”, up
to projective transformations, is tantamount to the classification of the irre-
ducible holomorphic representations of SL,(C) (linear or projective, there is
no essential difference since SL,(C) is simply connected), up to equivalence.
Given m > 1, the smooth projective rational curves not contained in a proper
projective subspace, of smallest degree (number of intersection points with
a generic hyperplane), form in P,,(C) one family, operated upon transitively
by AutP,,(C), and the degree is m. The irreducible representations are those
in which the G-orbit of a fixed point of B has degree m. It is then the
only closed orbit of G. In [LE], p.785-6, S. Lie reports that E. Study has
proved the full reducibility of the representations of SL,(C) (again, in an
equivalent projective formulation I do not recall here, but which will appear
in §13), but he does not describe the proof because it is long, maybe not
quite correct, and simplifications are hoped for. He adds it is very likely to
be true for representations of SL,(C), any n > 2. In fact, Study had made
this conjecture in a letter to him, even more generally for semisimple groups.

3. In his Thesis E. Cartan provides a proof of full reducibility [Crl1]. It is
algebraic, deals with Lie algebras so establishes in fact the full reducibility of
the representations of the Lie algebra s(,(C) of SL,(C), but this is equivalent.
He does not state the theorem explicitly, however. The proof is embedded
(pp. 100-2) in that of another one, due to F. Engel, to the effect that a non-
solvable Lie algebra always contains a copy of s0(C). But a statement is
given at the beginning of Chapter VII (p. 116) with a reference to the passage
just quoted for the proof.

In 1896, G. Fano, who knew about Study’s theorem through [LE] and was
surely not aware of Cartan’s proof, maybe not even of Cartan’s Thesis, gave
an entirely different one in the framework of algebraic geometry, using the
properties of “rational normal scrolls” [F].

He first makes two remarks of an algebraic nature which simplify the
argument.

a) An induction on the length of a composition series shows it suffices to
carry the proof when the space E of the given representation contains one
irreducible G-invariant subspace F such that E/F is also irreducible. In other
words, since the V,,’s are the irreducible representations, up to equivalence,
it suffices to consider the case of an exact sequence

(1) 0—-V,—-E—=YV, -0

(again, in projective language, see 13.1).
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b) In (1), it may be assumed that m > n. If m < n, this is seen by going
over to the contragredient representations

(2) 0—-V, - E*—>V —0,

noting that £ is fully reducible if and only if E* is, and that for each m,
the representation V,, is self-contragredient. This also shows that it suffices
to consider the case where m < n. In fact, this last reduction allows for a
considerable simplification in Cartan’s proof, whereas the reduction to m > n
is the one Fano uses. (see §12, §13 for more details).

4. Another development came from a different source: the idea of
averaging over a finite group. In 1896 it was shown that a finite group G
of linear transformations always leaves invariant a positive non-degenerate
hermitian form. It was stated by A. Loewy without proof [L] and by
E.H. Moore, who announced it at some meeting, communicated his proof
to F. Klein, and published it later [Mo]. This argument is the now standard
one (and Loewy stated later it was his, too): starting from a positive non-
degenerate hermitian form H( , ) on C", he considers the sum H°( , ) of
its transforms under the elements of G :

(1) H(,y) =Y H(g '.x, 97"y
geiG

which he calls a wniversal invariant for G. It is- obviously G-invariant
and positive non-degenerate. This construction seems quite obvious, but
Klein viewed it as interesting enough to make it the subject matter of a
communication to the German Math. Soc. [K]. For Moore it was an application
of a “well-known group theoretic process”. In [Lo] and [Mo], this fact is used
to show that a linear transformation of finite order is diagonalizable (which
was known, but with more complicated proofs). A bit later, H. Maschke,
a colleague of Moore at Chicago, made use of this universal invariant to
establish the full reducibility of linear representations of a finite group [Ma].
The standard argument is of course to point out that if V is a G-invariant
subspace, then so is its orthogonal complement with respect to H?. This is
the gist of Maschke’s proof, but presented in a rather complicated manner.

5. The idea of averaging was pushed much further by A. Hurwitz in a
landmark paper [H]. He was interested in the invariant problem. He starts by
saying it is well-known one can construct invariants for a finite linear group
by averaging, but he is concerned with certain infinite groups, specifically
SL,(C) and the special complex orthogonal group SO,(C) (n > 2).




FULL REDUCIBILITY AND INVARIANTS FOR SL,(C) 75

Hurwitz recalls first that if G is a finite linear group acting on C" and P
is a polynomial on C" then the polynomial P! defined by

(1) Py=N"'.) Plg7'.x) (xeC,
gei

where N is the order of G, is obviously invariant under G (the factor
N~ is inserted so that P® = P if P is invariant). If now G is infinite,
the initial idea is to replace the summation in (1) by an integration, with
respect to a measure invariant by translations. However, if the group is not
compact (Hurwitz says bounded), this integral may well diverge. To surmount
that difficulty, A. Hurwitz used a procedure which turned out later to be
far reaching, namely to integrate over a compact subgroup G,, which insures
convergence, but choosing it big enough so that invariance under G, implies the
invariance under the whole group, an argument later called the “unitarian trick”
by H. Weyl [W1]. This is carried out for SU,, C SL,(C) and SO,  C SO,(C).
I describe it for G = SL,(C) and G, = SU,. The latter is

(2) G11:8U2:{< a— 2) a.beC, |Cl|2+|bl2-_—l}

Write a = x; +ixy. b = x3+ix4, with the x; real. Then SU, may be identified
to the unit 3-sphere
3) S ={(,....x) €R*, K4+ 4x=1}.
It can be parametrized by the Euler angles o, 4,0 :
X; = cosv.cosw.cosd
X = COSW.COS.sinf
4) o (e, [¥] < 7/2, 0 € [0, 2])
X3 = COsSv.sing
X4 = SNV .
The measure

(5) dv =cosy.cosp.d.dp.df

is then invariant under translations and the volume of S° with respect to dv
is 8m. Let 0: G — GLy(C) be a holomorphic linear representation of G and
P be a polynomial on C". Integration on G, yields the polynomial P! given
by ‘

Pi(x) = (8m)~! / P(g™ . x)dv
Gll
(6) w/2 /2 27
:(8ﬂ—)—1/ cosw.chp/ sin @.dgo/ P(g ' .x)df
—7/2 0

—/2
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(x € CM). It is invariant under the action of G, and the claim is that it is
even invariant under G itself. Given x € CV consider the function y, on G
given by

(7) ulg) =Pig™ . x) - Pi(x) (g€,

It is holomorphic in the entries of g, and is identically zero for g € G,. To
establish that it is identically zero on G, it suffices to show that it is zero
on a neighborhood U of the identity. The tangent space to G (resp. G,) at
the identity 1s the complex (resp. real) vector space g (resp. g,) of 2 x 2
complex (resp. skew-hermitian) matrices of trace zero. Take U small enough
so that it is the isomorphic image of a neighborhood U, of the origin in
g under the exponential mapping. Let ji, be the pull back of u,|y by the
inverse mapping. Then [, 1s a holomorphic function on U, which is zero
on U,Ng,. But g, is a real form of g, i.e. as a real vector space, g is the
direct sum of g, and of the space ig, of hermitian 2 X 2 matrices of trace
zero. Hence [i, is identically zero on U, and our assertion follows.

6. From this Hurwitz deduces that the algebra C[CV]°, to be denoted
I; to simplify notation, of invariant polynomials on CV is finitely generated:
The projector P — P? obviously satisfies the relation

(1) (P.Q)f = P.Qh7 if P is G-invariant.

By Hilbert’s finiteness theorem, the ideal [ generated by the elements of
I; without constant term is finitely generated. Let Q; € Iz (1 < i < %)
be a generating system of this ideal, which may be assumed to consist of
homogeneous invariant elements of strictly positive degrees. Let now QO € I
be homogeneous. It certainly belongs to 7. There exist therefore homogeneous
polynomials Ay, ..., A, such that

0= ) 0 A

Then, we have, by (1)
0'=0=) 0:.A}

Since the A? have strictly lower degrees than (), it follows by induction on
the degree, that I is generated, as an algebra, by the Q;.

In analogy with Maschke’s theorem, Hurwitz could have easily given a new
proof of the full reducibility of the holomorphic representations of SL,(C),
and, more generally the first proof for SL,(C) (n > 3) and SO,(C) (n > 4).
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Indeed if, as in §4, H( , ) is a positive non-degenerate hermitian form on
CV . the form H° constructed as in (1), but using integration

H(y) = | Hg'.xg'.ydv  (xyeCh
Gy
is invariant under G, and still positive non-degenerate, whence the full
reducibility of the (continuous) representations of G,. There remains to show
that every G,-invariant subspace is G-invariant. Let V be one and W its
orthogonal complement with respect to H°. Fix a basis (f1,...,/n) of C¥
whose first p = dim V elements span V and the last N —p span W. Then
the matrix coefficients o(g); (i <p, j > p) are holomorphic functions on G
which vanish on G, hence, by the argument outlined previously, are identically
zero on G. Therefore V and W are G-invariant, and full reducibility is proved.

7. 1 spoke of a “landmark paper”. This is only by hindsight because
the paper was completely forgotten for about 25 years and, apparently, no
specialist of Lie groups or Lie algebras was aware of it and had realized that
a proof of Study’s conjecture for SL,(C) was at hand.

Meanwhile, progress was made on two fronts:

a) Character theory for complex representations of finite groups, orthogo-
nality relations, etc (Frobenius, Schur, Burnside, 1896-1906).

b) Construction of all irreducible representations of complex simple Lie
algebras by E. Cartan ([Cr2], 1914).

In 1922, 1. Schur discovers Hurwitz’s paper and uses it to extend the
character theory a) to representations of SU, or SO, [S]. Two years later,
H. Weyl combines b) and the point of view of Hurwitz-Schur to generalize it
to all complex or compact semisimple groups [W]. Until he came on the scene,
Schur was not aware of Cartan’s work nor Cartan of Schur’s or Hurwitz’s. He
also points out a gap in [Cr2]: the construction of irreducible representations
makes implicit use of full reducibility, a problem Cartan had not considered at
all there. At that point, as a proof, there was then only Weyl’s generalization
of Hurwitz and Schur, which was highly transcendental. Both Cartan and Weyl
felt that an algebraic proof of such a purely algebraic statement was desirable,
but viewed it as rather unlikely that one would be forthcoming. Cartan could
have pointed out that in the case of SL,(C) or rather its Lie algebra, one was
contained in his Thesis. The fact that he did not makes me think that he had

forgotten about it (but not forever, though: it is again given in his book on
spinors [Cr3]).
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8. In comparing physicists and mathematicians it is often said that the
physicists, unlike mathematicians, do not care that much for rigorous proofs.
Here, we are dealing with the search for a second proof, in a different
framework, of a theorem already established, a problem which would normally
seem even less attractive to a physicist. In that case, however, it did attract one,
H. L Casimir, whose approach had its origin in the use of group representations
in quantum mechanics. Since it involves SO3; or SO3;(C) rather than SU, or
SL,(C), let me recall first that SOz (resp. SO3(C)) is the quotient of SU,
(resp. SL,(C)) by its center, which consists of £1d. In particular, s[,(C) may
be viewed as the complexification of the Lie algebra so; of SOj, so that
we can take as a basis of it the infinitesimal rotations Dy, Dy, D, around the
three coordinate axes in R?, where x,y,z are the coordinates:

0 0 0 0 -1 0 0
1) D,={0 0 1 D,=10 0 O D,=11 0 O
0 0 1 0 O 0 0

Viewed as differential operators on functions, these transformations are
(2) Dx:yoazﬂz-ay’ Dy:Z-ax_x-aZ, DZ:y.ax'—.Xoﬁy.
The application to quantum mechanics makes use of

L.=i'.D, L=i'.D, L =i'.D,

called the components of the moment of momentum and of
2 2 72, 72
(3) =L +L+ L7,

the square of the moment of momentum.

The decisive idea is to use L?. It is a differential operator, also represented
by minus the sum of the square of the matrices in (1). It belongs to the
associative algebra of endomorphisms of C? generated by sl,(C), a quotient
of the so-called universal enveloping algebra of sl,(C), but not to the Lie
algebra itself.

An elementary computation shows that L* commutes with the infinitesimal
rotations, hence with s[,(C) itself. A linear representation (o, V) extends to
one of the enveloping algebra and in particular o(L?) is defined. If o is
irreducible, then o(L?) is a scalar multiple of the identity (Schur’s lemma).
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In the representation V, of degree n+ 1, this scalar is equal to n(n + 2)/4.
It characterizes the representation, up to equivalence').

In order to prove full reducibility, Casimir notes that it suffices to consider
the case of the exact sequence (1) in §3. Assume first m # n, the main case.
Then o(L?) has two eigenvalues, m(m+2)/4 and n(n+2)/4. The eigenspace
W for the latter eigenvalue intersects V,, only at the origin. Since o(L?)
commutes with J(E[Q(C)), the space W is also invariant under SL,(C). Its
projection in V, is invariant, non-zero, hence equal to V,,, so W is the sought
for complement to V,,. If m = n, the existence of an invariant complement
is proved by a rather elementary computation, sketched in 12.4.

9. An analog of L? had been introduced in 1931 by Casimir for any
complex semisimple Lie algebra, later called the Casimir operator. Using it
van der Waerden generalized Casimir’s argument to give the first algebraic
general proof of the full reducibility of finite dimensional representations of
complex semisimple Lie algebras [CW].

Later it was realized that the Casimir operator is an element in the center
of the universal enveloping algebra (which generates it for s(,(C)). The full
center was investigated in the late forties by G. Racah, also a physicist, on
the one hand, by C. Chevalley and Harish-Chandra on the other, and became
a powerful tool in the study of the topology of compact Lie groups and of
infinite dimensional representations of semisimple Lie groups.

Racah’s motivation was representation theory. From a physicist’s point
of view, the eigenvalue of L? gave a parametrization of an irreducible
representation of SL,(C) by a number with a physical meaning, whereas
the highest weight had none. For higher dimensional groups, the eigenvalue
of L? does not characterize the representation, up to equivalence, which makes
the general argument in [CW] quite complicated. Racah’s idea was to search
for more operators commuting with the Lie algebra (r independent ones if 7 is
the rank of the Lie algebra), the eigenvalues of which would again characterize
the irreducible representations. This would then allow one to treat the case of
two inequivalent irreducible representations in a short exact sequence in the
same way as for s[,(C) and considerably simplify the proof. At that time, the
mathematicians were not searching for a new algebraic proof, however, and
this was not at all a motivation for Chevalley and Harish-Chandra.

h In_ the physics literature and in [W2], the irreducible representations of SL,(C) are
parametrized by (1/2)N. The representation V; there is our Vo It has degree 2j + 1 and

the eiggnvalue of L? is j(j+1). It is a spin representation, i.e. non trivial on the center, if and
only j is a half-integer.
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10. The paper [CW] was followed shortly by two other algebraic proofs,
one by R. Brauer [Br] and one based on a lemma of J.H.C. Whitehead,
which is now best expressed in the framework of Lie algebra cohomology,
and became the standard algebraic argument for a number of years.

In 1956, a new proof was published by P. K. RaSevskii [R]. Consider the
group Aff(CY) of affine transformations of CV. It is the semidirect product of
the group of translations by the group GLy(C). Accordingly, its Lie algebra
is the semidirect product s &t of the space of translations t by the Lie
algebra s of GLy(C). The new ingredient is the proof that any representation
of a semisimple Lie algebra in the Lie algebra aff(C") of Aff(C") leaves a
point of CV fixed or, globally speaking, any complex semisimple group of
affine transformations of CV has a fixed point. Let now ¢ be a representation
of the complex semisimple Lie algebra g in C¥ and V € CY an invariant
subspace. Then the set of subspaces W of CM complementary to V forms
in a canonical way an affine space, with space of translations CY/V. It is
operated upon naturally by o(g). The existence of a fixed point implies that
of a g-invariant complement to V, whence the full reducibility.

When N. Bourbaki was preparing Volume 1 of the book on Lie groups
and Lie algebras, entirely devoted to Lie algebras, an algebraic proof was
needed. The cohomological one did not seem really suitable, requiring as it
did lots of preliminaries on cohomology of Lie algebras, which it did not seem
appropriate to introduce at that early stage of the exposition. Then Bourbaki
turned to RasSevskii’s proof and made it somewhat more algebraic and self-
contained. After the book was published in 1961, I stumbled once on a copy
of [Br], and realized this argument was the one of [Br], another example of
a paper overlooked for over 25 years, the knowledge of which would have
saved some work to Bourbakai.

11. This pretty much concludes my story, but as Poincaré once wrote,
there are no problems which are completely solved, only problems which are
more or less solved. Still considering SL, one may ask about the problems I
and II for SL,(k) where k 1s an algebraically closed groundfield of positive
characteristic p. It is well-known that full reducibility does not necessarily
hold. Take for example k of characteristic two and the representation V, of
degree three on the homogeneous quadratic polynomials. It has x*,x.y and
y? as a basis. In characteristic 2, we have the rule (a + b)> = a*> + b* so
the linear combinations of x*> and y* are the squares of the linear forms, and
form a two-dimensional invariant subspace V. A complementary subspace is
of dimension one therefore, if invariant, would be acted up trivially by SL;(k).
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However, SL,(k) does not leave any non-zero element of V; stable, so V, is
not fully reducible.

This does not rule out a positive answer to problem I, but if so, another
approach had to be devised. D. Mumford proposed a weaker notion than
full reducibility, now called geometric reductivity: if C is an invariant one-
dimensional subspace, there exists a homogeneous G-invariant hypersurface
not containing C (in the case of full reducibility it could be a hyperplane). Then
Nagata showed that this condition indeed implies the finite generation of the
algebra of invariants. Later geometric reductivity was proved by C.S. Seshadri
for SL,(k) and by W. Haboush in general.

Even over C, the problems of full reducibility and of the determination of
irreducible representations resurfaced not for SL,(C), but for its generalization
as a Kac-Moody Lie algebra, or for the deformation of its Lie algebra as a
“quantum group”. This has led to further problems and to more contacts with
mathematical physics.

APPENDIX : MORE ON SOME PROOFS OF FULL REDUCIBILITY
We give here more technical details on the proofs of full reducibility for
s[,(C) or SL,(C) due to Cartan, Fano and Casimir, assuming some familiarity

with Lie algebras and algebraic geometry. We let g stand for sl,(C).

12. LIE ALGEBRA PROOF:

12.1. Let
1 0 0 1 0 O
1 h = — =
» o ) =[5 o] =[5 0]
be the familiar basis of g. It satisfies the relations
(2) (el =2e  [hfl=-2f [e,f]1=—h.

The elements h,e,f define one-parameter subgroups (¢ € R)

th __ et 0 te 1 4 f _ 1 O
¢ (0 e—f> ‘ _(0 1) R o)'

By letting them act on functions of x,y and taking the derivatives for t — 0,
we get expressions of &, e,f as differential operators, namely

(3) h=x.0,—y.0,, e=x.0,, f=—y.0,.
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Let E be a representation space for g and E. (c € C) the eigenspace for -h
with eigenvalue c. Then (2) implies

4) e.E,.CE.,, f.E.CE.,.
More generally, if (h—c.I)?.v =0 for some g > 1, then

(5) h—(c+2).D1.e.v=0=h—-(c—-2).D7.f.v=0.

12.2. We now consider V,,. It has a basis x"'.y' (i =0,...,m) and
xX™~1.y' is an eigenvector for h, with eigenvalue m — 2i. Let

m . .
(D Um—2i:<l.> xm—l-yl ((=0,...,m).
The v,,_,; form a basis of V,, and we have:
(2) h.Vp_g = (m—20)Vy_2; (i=0,...,m).

A simple computation, using 12.1(2), (3), yields

(3) f cUm—2i = "(l + 1)’Um—2i—2
(l = 07 . ,I’I’L) s
4) €. Up—2i =(mMm—1i+ 1D Vu_2i12
with the understanding that
(5) Um42 = V-2 = 0.
(3) and (4) imply
(6) f €. Uy = —im— i+ DV
(7) e f -Um—2i = (l + 1)(m - i)vm——2i .

REMARKS. (a) The eigenvalues of & in V,, are integers. By consideration
of a Jordan-Hoélder series, it follows that this is true for any finite dimensional
representation. |

(b) In P(V,,) the rational normal curve occurring in Lie’s description of
the irreducible projective representations of SL,(C) (see §2) is the orbit of the |
point representing the line spanned by x™. This is also the unique fixed point
in P(V,,) of the group U generated by e, i.e. the group of upper triangular
unipotent (eigenvalues equal to one) matrices. It is therefore also the locus of
the fixed points of the conjugates of U in SL,(C), and each such conjugate
has a unique fixed point in P(V,,).
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12.3. Note that 12.2(5) is a consequence of 12.2(4) and of the commutation
relations 12.1(1). A similar argument shows more generally that if E is a
representation of g and v € E satisfies the conditions

(1) e.v=0, h.v=c.v (c e O,

then the elements f'.v (i > 0) span a finite dimensional g-submodulev F. In
particular C.v is the eigenspace with eigenvalue ¢ and all other eigenvalues
of h in F are of the form ¢ —¢qg (g€ N, g > 1).

12.4. First proof of full reducibility. We use 12.3, which is contained in
[Cr1] and the two remarks a) and b) of §3. This reduces the proof of full
reducibility of a g-module E to the case of a short exact sequence

(1) 00—V, —>E>V,—0 (m < n).

Let m < n. Then & has an eigenvector v € E with eigenvalue n, which does
not belong to V,,. It is annihilated by e, since there are no weights > n in
Vi or V., hence in E. By 12.3, it generates a g-submodule distinct from
Vn, which must therefore be a g-invariant complement to V,,.

Let now m =n. Let {v,_»} ({=0,...,m) be the basis of V,,, viewed
as subspace of E, constructed in 12.2. Let v, be a vector which maps under
7 onto the similar basis element of the quotient and let v/, _,, = (7). v,

m—2i i) Ym:

Then the v’ project onto the basis of E/V,, defined in 12.2. There exists

m—2i

a € C such that
(2) h.v,/n:m.v,/n—i—a.vm.

We claim it suffices to show that a = 0. Indeed, in that case, 12.3 again

implies that v, generates a g-submodule distinct from V,,, hence a supplement
to V,.

There remains to prove that a = 0. We claim first
3) h. v,'n_2l- =(m— 21’)1),’71‘2[ +a.vy,_o; i=0,....m).

For i = 0, this is (2). Assuming it is proved for i, we obtain (3) for i +1
by applying f to both sides and using 12.1(2), 12.2(3).
For i > 1, we have, by 12.1(2) and 12.2(3)

4) i€ Uy g =—€.f Uy gin=~f e Uy st hV 5,
By (3) and 12.2(6), this yields
(5) e Uy g =im—i+1). V) 5iir+a. Unosiys.

If we apply (5) for i=m—+ 1, we get a.v_,, =0, hence a = 0.
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REMARK. This last computation is contained in [CW] and also, unknown
to the authors, in [Cri]. As we saw, the proof for m < n reduces immediately
to 12.3, and by b) in §3 it suffices to consider that case when m # n. A direct
computation along the lines of the previous proof is longer if m > n (see
12.5). Cartan performs it even for a Jordan-Holder series of any length, which
leads to a rather complicated argument. By using his operator, Casimir did
not have to make any distinction between the cases m < n and m > n.

12.5. To give a better idea of Cartan’s proof, we discuss the case m > n
directly, without reducing to m < n.

We let v, and v, ,, (i > 0) be as before. Note first that if » and m
have different parities, then V, and V,, have no common eigenvalue for 4.
In particular & has no element of weight n+2 in E and the eigenspace for
n is one-dimensional, hence spanned by v/. Again, by 12.3, v/ generates a
complementary g-module. So we assume that m =n mod 2. As before, the
whole point is to find v) satisfying the condition 12.3(1), for ¢ = n.

As above, there is a constant a such that
(1) hov,=n.v, +a.v,.
We want to prove v, may be chosen so that a = 0. As in 12.4, we see that

2) v o =m—20).0 i +a.ves  (i>0).

n—2i

The weights in V, are contained in [n, —n], so the projection of f.v'  in

—Hn
V, 1s zero and we have, for some constant c,

(3) fou =c.v_,_s.

Let v/ = v, —c.v, and following 12.2(4), define v) ,, inductively by the
relation

(4) U:l,——?,i = —i f 'U,,l/__zl'_}_z (l = 1, Ce ,n) .

By induction on i, we see that

(5) hov! o= (n—2i).v , +a. v i=0,...,n

n—2i

and also, in view of (3), that
(6) fol =fv., —c.f.u,=0.
For i = n, the equality (5) gives

(7) hoo' =-n' +a.v_,.
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Apply now f to both sides and recall that f.h=nh.f+2f. In view of (6)
and 12.2(3) for m = n, we get
(8) a.n+1).v_,»=0.

But n < m so v_,_2 # 0, whence a = 0.
We may therefore assume that v, is an eigenvector of h. There is no
eigenspace for i with eigenvalue n+ 2 in V!, hence

9) e. v, =b. V2 be ).
By 12.2(4), for i = (m —n)/2 (recall that m =n (2)), we get

(10) e.v, = ((m +n+ 2)/2)  Upa2
therefore
(11) wy =, — b((m+n+2)/2)"" .0,

satisfies the conditions
(12) h.ow,=n.w,. e.w,=0,

so that, by 12.3, g.w, is a copy of V, complementary to V.

13. FANO’S PROOF:

It deals with projective transformations and uses algebraic geometry. Given
a finite dimensional vector space F over C, we let P(F) be the projective
space of one-dimensional subspace of F. If F is of dimension n, P(F) is
isomorphic to P,_(C).

13.1. The proof is contained in §§7, 8, 9 of [F]. §9 shows how to reduce
it to the case considered in §3, a), b), that is, to the case of a short exact
sequence 12.4(1) with m > n, but expressed in projective language, namely :

The space P = P(E) contains a minimal irreducible invariant projective
subspace W = P(V,,) of dimension m and the induced projective representation
in the space W’ of projective (m + 1)-subspaces containing W is irreducible.

The problem is then to find an invariant projective subspace D not meeting
W . If so, it has necessarily dimension n and P(E) is the join of W and D.
Moreover, by the remark b) in §3, it may be assumed that m > n. Let us
write N for the dimension of P. Then N=m+n+1 and m > (N — 1)/2.

As in 12.2(b), U 1is the one-parameter subgroup of G = SL,(C) generated
by e. Its fixed point set is also the subspace E¢ of E annihilated by e. Since
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U is unipotent, any line invariant under U is pointwise fixed, so that the
projective subspace P(EY) associated to EV is also the fixed point set P(E)Y
of U on P(E). Similarly, it may be identified with the set P(E)® of zeros of
the vector field on P(E) defined by the action of U.

In §7, Fano proves that P(E)® 1s a projective line. I am not sure I understand
his argument, so I shall revert to the linear setup. As just pointed out, we
have to show that E¢ is two-dimensional.

In V,, and V, it is one-dimensional, so the exact sequence 12.4(1) shows
that dimE® < 2. As in §3, let E* be the contragredient representation to
E. Then E* is the dual space to E/eE so it is equivalent to prove that
dim E*° = 2. Therefore we may assume that m < n (our assumption earlier,
but not the one of Fano). Fix a vector v € E projecting onto a highest weight
vector in V,. It is an eigenvector of 4 if m < n, is annihilated by (h—n.I)*
otherwise, and in both cases is annihilated by e (see 12.1(4), (5)).

13.2. The next and main part of Fano’s argument depends on some
properties of the “rational normal scrolls”, which we now recall (see [GH],
p.522-527). Assume N > 2 and let Z be a surface in P, not contained in
any projective subspace. Then its degree is at least N — 1 ([GH], p. 173). Those
of degree N — 1 have been classified, up to projective transformations ([GH],
loc.cit.). Only one is not ruled, the Veronese embedding of P,(C) in Ps(C).

The others are the rational normal scrolls S, (a +b = N — 1), obtained
in the following way: Fix two independent projective subspaces A,B of
dimension a,b. Then P = A * B 1s the join of A and B. Let C4 (resp. Cp)
be a rational normal curve in A (resp. B) and ¢ : C4 — Cp an isomorphism.
Then S, is the space of the lines D(x, p(x))(x € C4). If a >0, but b =0,
then Cp is a point, ¢ maps C4 onto a point and S, 1S the cone over Cy4
with vertex Cpg. It has a unique singular point, namely Cp and this is the
only case where S,;, is not smooth ([GH], p.525).

A rational curve in S,, which cuts every line D(x, ¢(x)) in exactly one
point is called a directrix. By construction C, (resp. Cg) is a directrix of
degree a (resp. b). The main result used by Fano 1s that if a > b, then Cp is
the unique directrix of degree b ([GH], p.525). Fano deduces this essentially
from an earlier result of C. Segre [Se].

If a = b, then we may identify A to B by a map ¢ which takes C4 to
Cg. It is clear that in that case S,, = S,, = P}(C) x P!(C).

13.3. We now come back to the situation in 13.1. In W there is exactly
one rational normal curve C stable under G. The zero set P(E)° of e is a
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line (13.1) and P(E)* N C consists of one point, namely, W¢. Let Z be the
set of transforms g - P(E)* of P(E)¢, (¢ € G). Since P(E) is stable under
the upper triangular group B and G/B is complete (in fact a smooth rational
curve), Z is a projective subvariety, a G-stable ruled surface. We first dispose
of a special case. The line ¢.P(E)° is the fixed point set of the subgroup
9U =¢.U.g"", conjugate to U by g. Assume that two distinct such lines
have a common point. It would then be fixed by two distinct conjugates of U.
But it is immediate that two such subgroups generate G, so that there would
be a fixed point D of G in P(E), necessarily outside W. Then P(E) would
be the join of W and D, and we would be through. From now on, we assume
that the lines g.P(E)¢ either coincide or are disjoint. We want to prove that
Z has degree N — 1 in P(F). First we claim that it is not contained in any
hyperplane Y of P(E). Indeed, if it were, it would be contained in a G-stable
proper subspace F, the intersection of the transforms of Y. The subspace F
would contain W properly, which would contradict the irreducibility of the
quotient representation in P(V,). The degree of Z is therefore at least N — 1
([GH], p.173-4). There remains to show that it is < (N — 1).

Let C" C W' be the closed orbit of G, which plays the same role as C
in W. In particular, it has degree n. Let now Y be a generic hyperplane of
P(E) among those containing W. Viewed as a hyperplane in W', it cuts C’
in n distinct points Q; (i = 1,...,n). Let U; be the conjugate of U which
fixes Q; (see 12.2, (b)). The intersection ZNY is a (reducible) curve. We
want to prove it has degree N — 1 in Y. We claim first

(1) YNZ=CUDyU---UD, (D;=PE)Y),

where the D; are disjoint projective lines, each intersecting C at exactly one
point.

First, by construction, C C ZNY,in fact C=WNZNY. Let xeZN Y,
x ¢ W. It belongs to some line D, = g.P(E)*. The line D, also contains
g.W¢, which belongs to ZNY, too. Therefore D, C Y, and of course
D, C Z, hence ZNY 1is the union of C and some of the lines D, . The line
D, spans with W a projective subspace of dimension equal to dim W + 1,
which represents a point of W', fixed under 9U. It belongs therefore to Y if
and only U is one of the U;, i.e. if and only if D, is one of the D;’s and
(1) follows.

Since C has degree m = dim W in W, it follows that ZNY is a curve of
degree m+n in Y, hence Z is a surface of degree at most m +n =N — 1
in P(E).
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Thus Z 1s a ruled surface, not contained in a hyperplane, of smallest
possible degree. It is therefore a “rational normal scroll” (13.2). It is isomorphic
to S,p» where a =dimW =m and b=N—-1—-a=n.

Recall that we have reduced ourselves to the case a > b > 0. Assume
first a > b. Then, (see 13.2), Z contains a unigue directrix of degree b. It is
a normal curve in a b-dimensional subspace, which must be invariant under
G, since Z is. This provides the complementary subspace to W.

Let now m = n. Then (13.2), Z = C x C’ is a product of two copies of
P!(C), where C is, as before, a G-stable rational normal curve in W and
C’ = P(E)°. The transforms ¢.P(E)* of C’ are the lines {c} x C’'(c € O).

The lines C, = C x {y} (y € C’') are “directrices”. We claim that they
are all invariant under G. Clearly, the intersection number C, - C; is zero if
y#z (y,z€ C'). Let g € G. Since it is connected to the identity, we have
then also (g.C,)-C, =0, therefore g. C;NC, = & unless g.C, = C,. Since
g - Cy must meet at least one C,, we have ¢g.C, = C, for some z and we see
that G permutes the curves {C,}(y € C'). Each such curve contains a fixed
point of e, hence of U. Therefore C, is stable under U. Now the subgroup
H of G leaving each curve C, stable is a normal subgroup, which is # {1}
since it contains U. But G 1is a simple Lie group, therefore H = G, which
proves our contention. Any curve C, is a rational normal curve in a subspace
W}’, which is hecessarily G-stable. This provides infinitely many G-invariant
subspaces and concludes the proof.

REMARK. Let us compare the orders of the steps in the proofs of Cartan
and of Fano. In 12.4 and 12.5 the first item of business is to show that the
action of & on a certain h-stable two-dimensional subspace is diagonalisable.
That space is £° in 12.4, and subsequently shown to be E® in 12.5. Once a
new eigenvector of s annihilated by e 1s found, 12.3 can be used. In Fano,
the first step is to show that E¢ 1s two-dimensional or rather, equivalently,
that P(E)¢ is a projective line. There, the analogue of the first step of Cartan
would be to prove the existence of two fixed points on P(E)® of A, or of the
group H = {e™} generated by h. One is W¢. In the generic case m > n,
Fano’s argument may also be viewed as a search for this second fixed point:
it is the intersection of P(E)¢ with the (unique) directrix Cp. However, since
the proof provides directly the G-orbit Cp of that second fixed point, the
argument is not phrased in that way.

I am grateful to Thierry Vust for a careful reading of the manuscript,
which led to a number of corrections and clarifications.
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