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60 S. POPA
1. PROOF OF THE THEOREM

Let X = R3 \ {0} and Hy(x,y) =x, Hi(x,y) =y, i=1,2,...,n. As in
([C], page 77), it follows that

pi(Ao X A;)  Tr(@o(ea, (b)) Pi(ea, (b))

for A; C Ry, 0 <j < n, Borel sets such that for each i > 1 either 0 ¢ Ay
or 0 & A;, defines a Radon measure 1; on X, which satisfies the properties:

@ [fEHDI, ,, = Te(@«f|(B)) (resp., Hf(Hi)“iM = Te(@i(f['(B)) <
Hf(bi)lli,n) for all Borel functions f: [0,00) — C with f(0) = 0 and
f(by) € L'(Py,Tr) (respectively f(b;) € L*(Py,Tr)), i=0,1,...,n.

(b) / Jo(Ho)fi(Hy) dpi = Tr(Do(fo(bo)@i(f (b)), for all f;: [0,00) — C Borel

X
with £(0) =0 and fi(b;) € L*(P;,Tr), Vi=0,1,...,n.

©) [lfo(Ho) — filH)Il, . = | Po(fo(bo)) — @i(fi(b)) |, 1, for all f; as in (b).

(d) ||Ho — H; H;M = Tr(@o (b)) + Tr(Di(b;)) — 2 Tr(Po(bo)Di(by)) < 66.
Proof of (a)—(d). Indeed, (a) and (b) are clear by the proof of I.1 in [C]

and the definition of p;. Further on, by (a), (b), (1), and Kadison’s inequality

(which asserts that positive, linear, unital maps ¢ between C* algebras satisfy
0(b)p(b) < p(b?) for any b = b*), we get:

folHo) — FH)3 .. = WfoHI3 , + IfED3,, — 2Re / fo(Ho)f:(H) dp
JX

= Tr(DPo(fo(bo)*fo(bo)))
+ Tr(Pi(fi(b:) *£i(b))) — 2 Re Tr(Po(fo(bo)) Di(f (b))
> Tr(Po(fo(bo))* Do (fo(bo)))
+ Tr(®:(fi(b:))" Pi(fi(b:))) — 2 Re Tr(Po(fo(bo)) D:(fi(D:))")
— [|Dofo(bo)) — PiFiB)I3 1 -
This proves (c). Then (d) is clear by noticing that the hypothesis and the
Cauchy-Schwarz inequality imply :
Tr(@o (b)) + Tr(Pi(b7)) — 2 Tr(Po(bo) Pi(by)
< Ti(bp) + Tr(b7) — 2 Tr(Po(bo) Pi(b:)
=2 = 2Te(Do(bo)Di(b;))
< 2 — 2Tr(@g(bo)*) + 26
<2(1— (1 —6)*)+26 <66,
thus ending the proof of properties (a)—(d). L]
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Proof of (i) in the Theorem. To prove (i), remark that we have, like in
proof of 1.2.6 in [C], the estimate:

2
/ “6[1/2(H0) — et1/2(Hi)|l2,p,,- dr
Ry

= |\Hg — H? ||, , < |1Ho — Hill, ,,[[Ho +Hin,‘u,- :

But (d) implies ||Ho — Hill, , < (66)!/% and (a) implies |[Ho + Hill, ,, <
1Holl, ., + I1Hil5,,., < l1Pollym + 1bill, . = 2. Thus, by applying (c) to the
functions fi = Xp1/2,00)> 0 <i<n, for each t > 0, and summing up the
above inequalities over i we obtain

[ > Iuenraoo)  @utepailf e
(%) Toi=1

< 2n(66)'/* = 2n(66)"/* / leqs2(Bo) |5 1 dt

R}

This implies that if we denote by D the set of all # > 0 for which

90 E S | @olensz(b0)) — @ilenrs Bl 1 dt < 674 ea2(bo) 5 1, »

i=1
then
/ lear(bo)lly g, dt > 1 —5n6"/*.
D

Indeed, from [, |le, /2(]90)‘@,1} dt < 1 — 5n6'/*, by taking into account that
g(t) > 61/4||e,1/z(b0)||§’n for t € RL \ D, we would get:

J

g(t)dt > / g(t)dt
R \D

.
> 51/4/ ||etl/2(b0)”§,Tr d
R \D ;

> 5n6'/% > 2n(66)'/? .

which is in contradiction with (x).

In particular, since § < (5n)™*, we have 1 —516'/* > 0 so that D # @ .
Thus, any s > 0 with s> € D will satisfy (i).

Proof of (i1) in the Theorem. To prove (ii), note first that Tro®y < Tr
already implies that for each fixed x € P, the map L'(P,,Tr) > x; —
Tr(x®o(x;)) defines a positive functional on L'(P;,Tr), which we denote




62 S. POPA

by @j(x). Also, if we identify LY(P,,Tr)* with P;, then 0 < x < 1
implies 0 < @j(x) < 1. Moreover, if in addition we have Tro®, = Tr,
then ®j(1) = 1, so ®f defines a positive, unital, linear mapping from P,
into Py = L'(Py, Tr)* satisfying Tro®} = Tr. Consequently, if we denote
@ = Pfo®;: Py —» Py, 1 <i < n, then ®(1) =1, Tro®, < Tr, Vi,
1 <i<n, and we have the estimates:
1D(Br) — bolly 1 = @@ 1, + 160][3 7, — 2 Tr(DE(Di(B:))bo)

< 2 = 2Tr(@i(bi)Po(bo))

= 2+ [|®o(bo) — Pilhi) |3 1, — Do) I3 1, — 1Pi(B)[3 7,

<2462 -2(1 6% <26,

In particular, if we denote &' = (26)'/? then the above implies :
II(I)g(bl.)HZ,Tr —>— HbiHQ.,Tr - (25)1/2 =1- 5/-

Altogether, this shows that we can apply the first part of the proof, with
@) =id, ®},..., D) instead of Dy, Py,..., D, and ¢ instead of &, with the
same by, b1, ..., b,, to obtain that the set D’ of all # > 0 for which

S lleasz(bo) — Plen G5 1, < 8" llearn o)l x,

i=1
satisfies

lea/2(Bo)|2 ¢ dt > 1 — 5n8"/*.
J D’ ‘

Note that for + € D’ we have:
lepr2(b0) — @j(enr ) 3y < 6 lenrnBo)l 1,
for all i=1,...,n. Due to this we also get:
Tr(en2(0)) = llear2 (B3 1,

> [ @ienr i)l g > (1= 8" lenszbo)5
= (1= 8"*Y Tr(en 2 (bo)) > (1 — 26" Tr(e,i 2 (o))

for all t€ D' and all i =1,...,n. Let then D] be the set of all + € D' for -
which Tr(e,2(b;)) < (1 + 511/ 16)Tr(e,1 s2(bp)). It follows that we have:
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5171 / Tr(e,i,2(bo)) dt < / (Tr(e,i,2 (b)) — Tr(eps2(bo))) dt
D'\D! D'\D!

= / Tr(e,l/z (b;)) — Tr(eq2 (bp))) dr
D/

L / (Te(en 2 (o)) — Tr(ep (b)) dt
D |
< / (Tr(e, (b)) — Tr(e,a(b) di
R*\D’
+2(5/1/8/ Tr(etl/z(bo)) dr
b

< / Tr(e,»(bo)) dt + 26"/
R* \D/
< 58"t 108" < 36118

in which we used, in the previous estimates, the identity

(Tl’(efl/z(b,‘)) — Tr(e,l/z (bo))) dr = / (Tr(efl/: (b())) — Tl'(eﬂ/z (b,))) dr

D’ R*\D/

(which follows from the equalities

161113 1, = /R Tr(epa(by) dr = / Tr(ep/2(bo)) dt = ||bol[5 1)

R}

and the fact that 5n8’"/® < 1.

It thus follows that if we put D" = ()_, D;N D and take into account
that § < (5n)73%, then we get:

/ Tr(e,12(bg)) dtz/ Tr(e,i2(bp)) dt — Z/ Tr(e,/2(bg)) dt
" DND’ 1

"\D;
> 11— 5n61/4 — 5115'1/4 — 3115'1/16
>1-516%%>0.

Thus D” # @. But if s > 0 is such that s> € D then from the above
we have

| Tr(es(bo)) — Tr(es(b))| < 6/ Tr(e,(by)),

, which ends the proof of (i1).
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Proof of (ii1) in the Theorem. Finally, (iii) follows now immediately from |
the last inequality above, since we have:

| Pi(es(b) ||, 1 > II(DS((Di(es(bi)))Hz,Tr
> [les(bo)lly 1 — lles(bo) — Di(es(b)) |, 1
> (1= 8"%)lleq s bo)ll
> (1= 850+ 61972 e s (b))
> (1= 6)leqrn®)y 1y -
This ends the proof of the last part of the theorem.  []

Proof of Corollary 0.2. As for the Corollary in the Introduction, it follows |
readily from the Theorem, by taking n =1, &y = ®; = O, once we observe
that, since @ 1is positive, it is selfadjoint, so

sup{HCD()c)HZ,Tr I x€ Py, |xll,n = 1}

= Sup{ “(D(X)HZ,Tr ' X< Pl: X = X*’ "xHZ,Tr - 1} 2

|®(x)||, 1,- Indeed, this is because by approximating x by step functions
(througH spectral calculus) we may assume x = ) .c;p; for some real scalars
¢; and finitely many, mutually orthogonal projections of finite trace p;. Then,
taking into account that ®(p;), ®(p;) > 0 implies Tr(P(p;)D(p;)) > O, we get:

and also by noticing that if x € P; is such that x = x* then | ®(|x|)||,, >

D@5 1 = 2y, €& TH @)D (p)))

< 3, leil g Te@@a@@py) = | @(xDf 4, -

2. APPLICATIONS

We shall apply Theorem 0.1 to a case when the semifinite algebras are in
fact commutative. We mention that the noncommutativity will be implicitly
present though, through the consideration of the positive maps. Note also that
in the proof of the Corollary below, only part (1) in the conclusion of the
Theorem is being used. In turn, the proof of this part of the Theorem 1is
relatively short.
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