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60 S. POPA

1. Proof of the theorem

Let X — \ {0} and Ho(x,y) x, Hfx^y) —y, i 1,2,..., n. As in
([C], page 77), it follows that

m(Ao x A,-) Tr^o^o))^^;))),
for Ay- C R+, 0 < j < n, Borel sets such that for each i > 1 either 0 0 Äo

or 0 ^ Ä/, defines a Radon measure /i; on X, which satisfies the properties :

(a) imOll,^. - Tr(OKlf|(^))) (resp., WfmWl,» Tr^fl/f fo))) <

||/(£>,-) H2 Tr f°r all Borel functions /: [0, oo) —> C with /(0) 0 and

m)£F (Pi, Tr) (respectively /(ft,-) 6 L2(/>,, Tr) i 0,1,...,

(b) J fo(Ho)m)dmTrftlfof«)^!,.^))), for all : [0, oo) - C Borel

with /K0) 0 and fi(bd £L\P{,Tr), V 0,1,...,
(c) ||/o(tfo) -/M2i#, > ||®o(/b(io)) - ®/(^(6/))||2,». for all as in (b).

(d) ||//0 - i/illL TrCOo(feg)) + Tr(<DK^)) - 2 Tr(d>070)<l>A))
Proof of (a) - (d). Indeed, (a) and (b) are clear by the proof of L1 in [C]

and the definition of \±i. Further on, by (a), (b), (1), and Kadison's inequality
(which asserts that positive, linear, unital maps ip between C * algebras satisfy
<p{b)<p(b) < tp(b2) for any b b*% we get:

WMHo) ~fim\\L \\MH0)ÊiIM+ mmil,,, -2Re

Tr(<Do(/o(£o)7o(£o)))

+ Tv^mbiYMbd))~2 Re Tr( )<!>/( /'/ /',

> Tr(<&o(/b(^))*<l>o(/o(feo)))

+ Tr(<J>,-(/K&;))*0;(/K&;))) - 2 Re TrCOoC/b^o))^^^'))*)

\\<S>o(fo(bo))-<S>i(fim\\lTr-

This proves (c). Then (d) is clear by noticing that the hypothesis and the

Cauchy-Schwarz inequality imply :

Tr(<D0(h95)) + Tr(OK^)) - 2Tr(®00>o)®A-»

< Tr(^) + Tr - 2Tr(O070)<I>A))

2 - 2Tr(®o(éo)«»i(fef))

< 2 - 2Tr(<Do7o)2) + 28

< 2(1 - (1 - 8f) + 28 < 68,

thus ending the proof of properties (a)-(d).
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Proof of (i) in the Theorem. To prove (i), remark that we have, like in

proof of 1.2.6 in [C], the estimate:

/ ||e,,/2(ft>dt
'R1

\\H20 - Hf\\^< ||ft0 -ft|ia,Jft> +ftll2l/

But (d) implies ||JÏ0 -ft||2 ^<(6<S)1/2 and (a) implies \\H0 + ftH2i|U,^

||fto||2,„ + lift I [2lW < IIMl.Tr + [lftll2,Tr 2' ThuS' ^ applying (C) t0 the

functions f X[,i/2>oo), 0 < i <n,foreach t > 0, and summing up the

above inequalities over i we obtain

(*)
/ 11^0(^1/2(^0)) — ®i(etifi(bi))\\2jTdt

^R+ J=4

< 2n(6<5)1/2 2«(65)1/2 f ||erl/2(^o)||2Xrdt.

This implies that if we denote by D the set of all t > 0 for which

n

9(t) - Y, 11^0(^/200)) - <5;0,i/20,0)112,Trdr < ^1/4|k,./20o)|l2>Tr »

1=1

then

[ ||^i/2(Z?o)||2Trdr^ 1 - 5^1/4
Jd' D

112

Indeed, from fD ||^ri/2(Z?0)||2,Tr&t < 1 - 5rc<51/4, by taking into account that

g(t) > ^1/41|^ri/2(^o)II2Tr for f e R+ \^' we would get:

g(t) dt> g(i) dt
Jri\D

> 6l/4 / |kri/2(/?o)||2Trd^

> > 2/r(6<5)1/2

which is in contradiction with (*).
In particular, since 6 < (5n)~4, we have 1 — 5n6!/4 > 0 so that D/0.

Thus, any ^ > 0 with s2 e D will satisfy (i).

Proof of (ii) in the Theorem. To prove (ii), note first that TroOo < Tr
already implies that for each fixed x G P2+ the map L{(P\,Tr) 3 ii h
Tr(xO0(xi)) defines a positive functional on Ll(PuTr), which we denote

L
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by Oq(x). Also, if we identify Ll(P\, Tr)* with P\, then 0 < x < 1

implies 0 < %(X) < 1. Moreover, if in addition we have TroOo Tr,
then Oq(1) 1, so Oq defines a positive, unital, linear mapping from P2

into Pi ~ L^PijTr)* satisfying TroOJj Tr. Consequently, if we denote

o; % O O/: Pi -> Pi, 1 < i < n, then O^l) 1, TroO; < Tr, Vi,
1 < i < n, and we have the estimates :

Altogether, this shows that we can apply the first part of the proof, with
Oq id, Oj dT instead of Oo, <£>1,..., and 6' instead of 6, with the

same bn, to obtain that the set D' of all t > 0 for which

Il ^(bi)- èollA 11^(^0ll'.Tr + INlA " 2Tr(®o

<2-2Tr((DA)Oo(^))
2 + ||Oo(fco) - *i(bi) ||22iTr - ||3>o(Ml2,Tr - \\®i(bi)\\lTl

< 2 + Ö2 -2(1 -6f < 26.

n

J2 IMbo) " WeMbiMl-rr < |^Tr

/= 1

satisfies

Note that for t G D' we have :

IMbo)~ 0;(e^2(^))||2,Tr < 6,1/8||efl/2(Z.0)!l2,Tr

for all / — 1 j.,., n. Due to this we also get :

Tr(efi/2 (bi)) ||e,i/2(^)||2jTr

> > (1 - 5'l/S)2\\etW2(b0)\\lTr

(1 _ y1/8)2Tr(erl/2(è0)) > (1 - 2i5/1/8)Tr(e/i/2(£>o))

for all t £ D' and all / 1,..., n. Let then D • be the set of all t £ D' for

which Tr(<?ri/2(£>/)) < (1 + ^/1//16)Tr(^i/2(/?o)). It follows that we have:
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6,i/i6 f Tv(elW2(b0))dt < [ - Tr(e,1/2(60))) df

JDf\D( JD'\D\

f Tr(eft/î(fe,))-Tr(eri/2(^o)))dt
JD'

+ f (Tr(«,fi/2(èo)) - Tr(efi/:(è,-)))d
Jd<

< [ (Tr(eri/î(fc0)) — Tr(e,1/2 (£,•))) dl
Jr;\d'

+ 2<5/1/S / Tr(e,,/2(&0))dJ
Jd<

< f Tv(etI/2(bo))dt + 26'WS

Jr*+\d>

< 5n6'1/4+ 26,l/S < 35/1/8.

in which we used, in the previous estimates, the identity

[ (Tr(e,i/2(fc/))-Tr(etW-(bo)))dt [ (Tr(^/2(&o)) - Tr(^i/2 (&/))) df
JD' Jr*+\D'

(which follows from the equalities

l|fe/||^=/ Tr(e,i/2(M)dt= [ Tr(e#i/2(&o))dr=||&o||^)

and the fact that 5/?5/1^8 < 1.

It thus follows that if we put D" ~ Pl/Li ^ ^ and take into account
that <5 < (5/2)~32, then we get:

[ Tr(eti/2 (b0)) dt> f Tv(eri / 2 (fe0)) df - V" f Tv(eti m (b0)) dt
JD" JDHD' j={ JD'\D[

> 1 -5/2<51/4 -5Z2(5/1/4 -3/2^1/16

> 1 — 5/2(51/32 >0.

Thus D" 0. But if s > 0 is such that s2 G D7/ then from the above

we have

iTr(<>,(/;,» - Trfe(£,))| < Trfe(£0)),

which ends the proof of (ii).
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Proof of (iii) in the Theorem. Finally, (iii) follows now immediately from
the last inequality above, since we have:

1I>/(<"ï(/'!))!|-> Ir > ||3>0*(<D;fe(^)))||2iXr

> iic-v(/>o);i2 Tr - Iki(^o) - 1

> (1 - S'lß)\\etW2(bo)\\2tTl

> (1 - 5'1/8)(1 + 51/16)_1/2||e/i/2(Z?,-)l|2)Tr

> (1 - (51/32)||efI/2(è;)||2)Tr •

This ends the proof of the last part of the theorem.

Proof of Corollary 0.2. As for the Corollary in the Introduction, it follows

readily from the Theorem, by taking n 13 Oo Oi O, once we observe

that, since O is positive, it is selfadjoint, so

sup{||<I>(x)||2iTr I X e Pi, ||x||2Tr =1}
SUp{||<l>(x)||2iTr I X G Pi, X X*, ||xI!2 Tr

1 }

and also by noticing that if a G P\ is such that x x* then ||0(|x|)||2Tr >
||0(jc)||2Tr. Indeed, this is because by approximating a by step functions

(through spectral calculus) we may assume x CiPi for some real scalars

ci and finitely many, mutually orthogonal projections of finite trace pt. Then,

taking into account that 0(p/),0(p7) > 0 implies Tr(0(p/)0(py)) > 0, we get:

II^Wl.Tr EijCiCj^(®(Pi)4»(Py))

< Ici 11 CITr(0(p,)<I)(pj)) ||3>([x[)iiTr •

2. Applications

We shall apply Theorem 0.1 to a case when the semifinite algebras are in
fact commutative. We mention that the noncommutativity will be implicitly
present though, through the consideration of the positive maps. Note also that

in the proof of the Corollary below, only part (i) in the conclusion of the

Theorem is being used. In turn, the proof of this part of the Theorem is

relatively short.
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