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ON CONNES' JOINT DISTRIBUTION TRICK

AND A NOTION OF AMENABILITY FOR POSITIVE MAPS

by Sorin POPA1)

0. Introduction

A key technical result in A. Connes' proof of the uniqueness of the

injective type II i factor is a perturbation lemma, showing that if two

positive, self-adjoint elements b0. b\ in a von Neumann algebra with a

semifinite trace Tr are close to one another in the Hilbert norm given by

Tr, ||Z?o — b\ ||7 Tr < e, then most of their spectral projections are also close:

\\es(b0)~ es(bi)\\2Tl< f(£)\\es(bo)\\2 TTiwith /V) ^ 0 as £ °- This result
has since then become an indispensable tool in the analysis of type II i factors

and semifinite von Neumann algebras in general. Actually, such estimates

are known to be of basic importance in classical real analysis as well. But
while elementary to prove for functions, they become quite non-trivial in the

'noncommutative framework' of the operators on the Hilbert space and were

poorly dealt with before Connes' result.

The solution he gave to this is amazingly simple and ingenious, yet using
only elementary functional analysis: since one would obviously like bo,bi
to commute, e.g., to be the coordinate functions on R2, then simply define
a measure p on the positive quadrant of R2 by requiring it to have the

same joint distribution in the variables x.y as bo.bi do with respect to Tr,
i.e., p([s. oc) x [t, oc)) Tr(fis(bo)et(bi)). This perfectly determines p and
transfers the estimates in the Hilbert norm given by the trace, for b0,b\ and
their spectral projections, into the same estimates for Hq(x. y) — x, H\ (x. y) y
in L2(p), i.e, in a commutative setting
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Note that the use of the L2 -norms in all this argument is imposed by the

joint distribution trick and that, in fact, this requires a delicate handling of
norm calculations, including the use of the Powers-Stprmer inequality and of
convexity properties of the Hilbert norm.

It is precisely the convexity of the Hilbert norm that we will further exploit
in this paper so as to derive, by a slight adaptation of Connes' joint distribution
trick and of the rest of his argument in [C], the following more general result:

THEOREM 0.1. Let P\. P2 be semifinite von Neumann algebras with normal

semifinite faithful traces, both of which are denoted by Tr. Let 0/: P\ —» P2,

j 0, 1,... %n, be positive, linear maps satisfying the conditions :

(1) 0/(1) 1, Tro0/ < Tr, j 0,\,...,n;
(2) sup{||4>/(x)||2]Tr I x ePuI|x||2;rr < 1} < 1, J 0.1.... ,M.

Let 8>0 besuch that 8< (5«)~32 and P\+ satisfy the

conditions :

(3) |%||2,Tr=l, l|<WII2,Tr>l -S, V/f
(4) iiO!:(/v,» |r < s,Vy.Then there exists s > 0 such that

(i) ||<£>o(es(Z>o)) - 0,UM/',)) ::.Tr < 8xlA\\es(bo)\\.

Moreover, if Oo also satisfies Tro0o Tr, then there exists s > 0 such that,

in addition to (i), we have

(ii) |Trfe(£0))-Tr (es(bj))\ < 8l/16Tr(es(b0)),Vy

and

(iii) [|0,'fe(^/))]|2iTr > (1 - 8^n)\\es(bj)\\2Tr,Vy

Our interest in such a statement (which at first may seem a bit long and

technical) comes from the following simple example: let Px—P2 — £°°{G),
for G a discrete group, with Tr implemented by the counting measure on G.

Take both O0if) 0iCO to be the Markov operator (l/n) Yj'Ui L9i(f), where

{g\..... gn} is a finite, self-adjoint set of elements of G, and Lgj denotes

the left translation operator by gt. Note that Oo,0i satisfy (1), (2) and that

if {915 • • • ->9n} contains the neutral element of G and generates G, then

condition (3) for Oi and all 6 > 0 amounts to Kesten's amenability condition

for (G; g\,... ,gn), requiring that the spectral radius of the Markov operator
is equal to 1 ([K]). Assuming it is satisfied, let e > 0 and b G £2(G) be such

that ||fe||2 1, ||0i(}L)||2 > 1 -8, where 6 (e/n2)32. Then b0 b\ \b\
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clearly satisfy conditions (3) and (4). By part (iii) of the theorem, we thus have

a spectral projection e of bo b\ such that ||Oi(V)||2 > (1 — <e://22)||^||2,Tr•

This clearly implies that if F C G is the support set of e then F is finite and

e-invariant for {gu ,gn}, thus showing that the group G satisfies Fplner's

amenability condition ([F], see also [Gr]).
So the above theorem can in fact be viewed as a general principle for

positive maps between semifinite von Neumann algebras, leading from a

"Kesten type condition" ((2) and (3) in our case) to a "Fplner type condition"

((iii) in our case). To emphasize this more clearly we restate Theorem 0.1 for
n 1, Oo Oi, introducing along the lines a definition of amenability for
positive maps between semifinite von Neumann algebras.

COROLLARY 0.2. Let P\,P2 be semifinite von Neumann algebras with
normal semifinite faithful traces denoted by Tr. Let O: Pi —» P2 be a positive,
linear, unital, Tr -preserving map. Then O satisfies

SUp{||0(v)||25Tr I X ^ IMI2.T1- — l} — 1

if and only if it satisfies

r \\®(e)\krr
sup{ 2'lr

I e G V(PX),eÏ 0, Vie) 00} 1.
11 ^ 112, Tr

Definition 0.3. A positive, linear, unital, Trace-preserving map <t>

between two semifinite von Neumann algebras Pi, P2 is called amenable if it
satisfies any of the equivalent conditions :

(a) Kestentype condition: sup{ ||0(x)||2Tr | G ||x||2Tr 1} 1 ;

(b) Fplner type condition : sup{ 1 e G e ^ 0, Tr(e) < oo} 1.

As an exemplification of this point of view, we will show in the last part
of the paper how one can obtain a Fplner type amenability condition for
weighted bipartite graphs, from a Kesten type amenability condition on such
graphs.
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