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ON CONNES' JOINT DISTRIBUTION TRICK

AND A NOTION OF AMENABILITY FOR POSITIVE MAPS

by Sorin POPA1)

0. Introduction

A key technical result in A. Connes' proof of the uniqueness of the

injective type II i factor is a perturbation lemma, showing that if two

positive, self-adjoint elements b0. b\ in a von Neumann algebra with a

semifinite trace Tr are close to one another in the Hilbert norm given by

Tr, ||Z?o — b\ ||7 Tr < e, then most of their spectral projections are also close:

\\es(b0)~ es(bi)\\2Tl< f(£)\\es(bo)\\2 TTiwith /V) ^ 0 as £ °- This result
has since then become an indispensable tool in the analysis of type II i factors

and semifinite von Neumann algebras in general. Actually, such estimates

are known to be of basic importance in classical real analysis as well. But
while elementary to prove for functions, they become quite non-trivial in the

'noncommutative framework' of the operators on the Hilbert space and were

poorly dealt with before Connes' result.

The solution he gave to this is amazingly simple and ingenious, yet using
only elementary functional analysis: since one would obviously like bo,bi
to commute, e.g., to be the coordinate functions on R2, then simply define
a measure p on the positive quadrant of R2 by requiring it to have the

same joint distribution in the variables x.y as bo.bi do with respect to Tr,
i.e., p([s. oc) x [t, oc)) Tr(fis(bo)et(bi)). This perfectly determines p and
transfers the estimates in the Hilbert norm given by the trace, for b0,b\ and
their spectral projections, into the same estimates for Hq(x. y) — x, H\ (x. y) y
in L2(p), i.e, in a commutative setting

1
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Note that the use of the L2 -norms in all this argument is imposed by the

joint distribution trick and that, in fact, this requires a delicate handling of
norm calculations, including the use of the Powers-Stprmer inequality and of
convexity properties of the Hilbert norm.

It is precisely the convexity of the Hilbert norm that we will further exploit
in this paper so as to derive, by a slight adaptation of Connes' joint distribution
trick and of the rest of his argument in [C], the following more general result:

THEOREM 0.1. Let P\. P2 be semifinite von Neumann algebras with normal

semifinite faithful traces, both of which are denoted by Tr. Let 0/: P\ —» P2,

j 0, 1,... %n, be positive, linear maps satisfying the conditions :

(1) 0/(1) 1, Tro0/ < Tr, j 0,\,...,n;
(2) sup{||4>/(x)||2]Tr I x ePuI|x||2;rr < 1} < 1, J 0.1.... ,M.

Let 8>0 besuch that 8< (5«)~32 and P\+ satisfy the

conditions :

(3) |%||2,Tr=l, l|<WII2,Tr>l -S, V/f
(4) iiO!:(/v,» |r < s,Vy.Then there exists s > 0 such that

(i) ||<£>o(es(Z>o)) - 0,UM/',)) ::.Tr < 8xlA\\es(bo)\\.

Moreover, if Oo also satisfies Tro0o Tr, then there exists s > 0 such that,

in addition to (i), we have

(ii) |Trfe(£0))-Tr (es(bj))\ < 8l/16Tr(es(b0)),Vy

and

(iii) [|0,'fe(^/))]|2iTr > (1 - 8^n)\\es(bj)\\2Tr,Vy

Our interest in such a statement (which at first may seem a bit long and

technical) comes from the following simple example: let Px—P2 — £°°{G),
for G a discrete group, with Tr implemented by the counting measure on G.

Take both O0if) 0iCO to be the Markov operator (l/n) Yj'Ui L9i(f), where

{g\..... gn} is a finite, self-adjoint set of elements of G, and Lgj denotes

the left translation operator by gt. Note that Oo,0i satisfy (1), (2) and that

if {915 • • • ->9n} contains the neutral element of G and generates G, then

condition (3) for Oi and all 6 > 0 amounts to Kesten's amenability condition

for (G; g\,... ,gn), requiring that the spectral radius of the Markov operator
is equal to 1 ([K]). Assuming it is satisfied, let e > 0 and b G £2(G) be such

that ||fe||2 1, ||0i(}L)||2 > 1 -8, where 6 (e/n2)32. Then b0 b\ \b\
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clearly satisfy conditions (3) and (4). By part (iii) of the theorem, we thus have

a spectral projection e of bo b\ such that ||Oi(V)||2 > (1 — <e://22)||^||2,Tr•

This clearly implies that if F C G is the support set of e then F is finite and

e-invariant for {gu ,gn}, thus showing that the group G satisfies Fplner's

amenability condition ([F], see also [Gr]).
So the above theorem can in fact be viewed as a general principle for

positive maps between semifinite von Neumann algebras, leading from a

"Kesten type condition" ((2) and (3) in our case) to a "Fplner type condition"

((iii) in our case). To emphasize this more clearly we restate Theorem 0.1 for
n 1, Oo Oi, introducing along the lines a definition of amenability for
positive maps between semifinite von Neumann algebras.

COROLLARY 0.2. Let P\,P2 be semifinite von Neumann algebras with
normal semifinite faithful traces denoted by Tr. Let O: Pi —» P2 be a positive,
linear, unital, Tr -preserving map. Then O satisfies

SUp{||0(v)||25Tr I X ^ IMI2.T1- — l} — 1

if and only if it satisfies

r \\®(e)\krr
sup{ 2'lr

I e G V(PX),eÏ 0, Vie) 00} 1.
11 ^ 112, Tr

Definition 0.3. A positive, linear, unital, Trace-preserving map <t>

between two semifinite von Neumann algebras Pi, P2 is called amenable if it
satisfies any of the equivalent conditions :

(a) Kestentype condition: sup{ ||0(x)||2Tr | G ||x||2Tr 1} 1 ;

(b) Fplner type condition : sup{ 1 e G e ^ 0, Tr(e) < oo} 1.

As an exemplification of this point of view, we will show in the last part
of the paper how one can obtain a Fplner type amenability condition for
weighted bipartite graphs, from a Kesten type amenability condition on such
graphs.



60 S. POPA

1. Proof of the theorem

Let X — \ {0} and Ho(x,y) x, Hfx^y) —y, i 1,2,..., n. As in
([C], page 77), it follows that

m(Ao x A,-) Tr^o^o))^^;))),
for Ay- C R+, 0 < j < n, Borel sets such that for each i > 1 either 0 0 Äo

or 0 ^ Ä/, defines a Radon measure /i; on X, which satisfies the properties :

(a) imOll,^. - Tr(OKlf|(^))) (resp., WfmWl,» Tr^fl/f fo))) <

||/(£>,-) H2 Tr f°r all Borel functions /: [0, oo) —> C with /(0) 0 and

m)£F (Pi, Tr) (respectively /(ft,-) 6 L2(/>,, Tr) i 0,1,...,

(b) J fo(Ho)m)dmTrftlfof«)^!,.^))), for all : [0, oo) - C Borel

with /K0) 0 and fi(bd £L\P{,Tr), V 0,1,...,
(c) ||/o(tfo) -/M2i#, > ||®o(/b(io)) - ®/(^(6/))||2,». for all as in (b).

(d) ||//0 - i/illL TrCOo(feg)) + Tr(<DK^)) - 2 Tr(d>070)<l>A))
Proof of (a) - (d). Indeed, (a) and (b) are clear by the proof of L1 in [C]

and the definition of \±i. Further on, by (a), (b), (1), and Kadison's inequality
(which asserts that positive, linear, unital maps ip between C * algebras satisfy
<p{b)<p(b) < tp(b2) for any b b*% we get:

WMHo) ~fim\\L \\MH0)ÊiIM+ mmil,,, -2Re

Tr(<Do(/o(£o)7o(£o)))

+ Tv^mbiYMbd))~2 Re Tr( )<!>/( /'/ /',

> Tr(<&o(/b(^))*<l>o(/o(feo)))

+ Tr(<J>,-(/K&;))*0;(/K&;))) - 2 Re TrCOoC/b^o))^^^'))*)

\\<S>o(fo(bo))-<S>i(fim\\lTr-

This proves (c). Then (d) is clear by noticing that the hypothesis and the

Cauchy-Schwarz inequality imply :

Tr(<D0(h95)) + Tr(OK^)) - 2Tr(®00>o)®A-»

< Tr(^) + Tr - 2Tr(O070)<I>A))

2 - 2Tr(®o(éo)«»i(fef))

< 2 - 2Tr(<Do7o)2) + 28

< 2(1 - (1 - 8f) + 28 < 68,

thus ending the proof of properties (a)-(d).
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Proof of (i) in the Theorem. To prove (i), remark that we have, like in

proof of 1.2.6 in [C], the estimate:

/ ||e,,/2(ft>dt
'R1

\\H20 - Hf\\^< ||ft0 -ft|ia,Jft> +ftll2l/

But (d) implies ||JÏ0 -ft||2 ^<(6<S)1/2 and (a) implies \\H0 + ftH2i|U,^

||fto||2,„ + lift I [2lW < IIMl.Tr + [lftll2,Tr 2' ThuS' ^ applying (C) t0 the

functions f X[,i/2>oo), 0 < i <n,foreach t > 0, and summing up the

above inequalities over i we obtain

(*)
/ 11^0(^1/2(^0)) — ®i(etifi(bi))\\2jTdt

^R+ J=4

< 2n(6<5)1/2 2«(65)1/2 f ||erl/2(^o)||2Xrdt.

This implies that if we denote by D the set of all t > 0 for which

n

9(t) - Y, 11^0(^/200)) - <5;0,i/20,0)112,Trdr < ^1/4|k,./20o)|l2>Tr »

1=1

then

[ ||^i/2(Z?o)||2Trdr^ 1 - 5^1/4
Jd' D

112

Indeed, from fD ||^ri/2(Z?0)||2,Tr&t < 1 - 5rc<51/4, by taking into account that

g(t) > ^1/41|^ri/2(^o)II2Tr for f e R+ \^' we would get:

g(t) dt> g(i) dt
Jri\D

> 6l/4 / |kri/2(/?o)||2Trd^

> > 2/r(6<5)1/2

which is in contradiction with (*).
In particular, since 6 < (5n)~4, we have 1 — 5n6!/4 > 0 so that D/0.

Thus, any ^ > 0 with s2 e D will satisfy (i).

Proof of (ii) in the Theorem. To prove (ii), note first that TroOo < Tr
already implies that for each fixed x G P2+ the map L{(P\,Tr) 3 ii h
Tr(xO0(xi)) defines a positive functional on Ll(PuTr), which we denote

L
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by Oq(x). Also, if we identify Ll(P\, Tr)* with P\, then 0 < x < 1

implies 0 < %(X) < 1. Moreover, if in addition we have TroOo Tr,
then Oq(1) 1, so Oq defines a positive, unital, linear mapping from P2

into Pi ~ L^PijTr)* satisfying TroOJj Tr. Consequently, if we denote

o; % O O/: Pi -> Pi, 1 < i < n, then O^l) 1, TroO; < Tr, Vi,
1 < i < n, and we have the estimates :

Altogether, this shows that we can apply the first part of the proof, with
Oq id, Oj dT instead of Oo, <£>1,..., and 6' instead of 6, with the

same bn, to obtain that the set D' of all t > 0 for which

Il ^(bi)- èollA 11^(^0ll'.Tr + INlA " 2Tr(®o

<2-2Tr((DA)Oo(^))
2 + ||Oo(fco) - *i(bi) ||22iTr - ||3>o(Ml2,Tr - \\®i(bi)\\lTl

< 2 + Ö2 -2(1 -6f < 26.

n

J2 IMbo) " WeMbiMl-rr < |^Tr

/= 1

satisfies

Note that for t G D' we have :

IMbo)~ 0;(e^2(^))||2,Tr < 6,1/8||efl/2(Z.0)!l2,Tr

for all / — 1 j.,., n. Due to this we also get :

Tr(efi/2 (bi)) ||e,i/2(^)||2jTr

> > (1 - 5'l/S)2\\etW2(b0)\\lTr

(1 _ y1/8)2Tr(erl/2(è0)) > (1 - 2i5/1/8)Tr(e/i/2(£>o))

for all t £ D' and all / 1,..., n. Let then D • be the set of all t £ D' for

which Tr(<?ri/2(£>/)) < (1 + ^/1//16)Tr(^i/2(/?o)). It follows that we have:
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6,i/i6 f Tv(elW2(b0))dt < [ - Tr(e,1/2(60))) df

JDf\D( JD'\D\

f Tr(eft/î(fe,))-Tr(eri/2(^o)))dt
JD'

+ f (Tr(«,fi/2(èo)) - Tr(efi/:(è,-)))d
Jd<

< [ (Tr(eri/î(fc0)) — Tr(e,1/2 (£,•))) dl
Jr;\d'

+ 2<5/1/S / Tr(e,,/2(&0))dJ
Jd<

< f Tv(etI/2(bo))dt + 26'WS

Jr*+\d>

< 5n6'1/4+ 26,l/S < 35/1/8.

in which we used, in the previous estimates, the identity

[ (Tr(e,i/2(fc/))-Tr(etW-(bo)))dt [ (Tr(^/2(&o)) - Tr(^i/2 (&/))) df
JD' Jr*+\D'

(which follows from the equalities

l|fe/||^=/ Tr(e,i/2(M)dt= [ Tr(e#i/2(&o))dr=||&o||^)

and the fact that 5/?5/1^8 < 1.

It thus follows that if we put D" ~ Pl/Li ^ ^ and take into account
that <5 < (5/2)~32, then we get:

[ Tr(eti/2 (b0)) dt> f Tv(eri / 2 (fe0)) df - V" f Tv(eti m (b0)) dt
JD" JDHD' j={ JD'\D[

> 1 -5/2<51/4 -5Z2(5/1/4 -3/2^1/16

> 1 — 5/2(51/32 >0.

Thus D" 0. But if s > 0 is such that s2 G D7/ then from the above

we have

iTr(<>,(/;,» - Trfe(£,))| < Trfe(£0)),

which ends the proof of (ii).



64 S. POPA

Proof of (iii) in the Theorem. Finally, (iii) follows now immediately from
the last inequality above, since we have:

1I>/(<"ï(/'!))!|-> Ir > ||3>0*(<D;fe(^)))||2iXr

> iic-v(/>o);i2 Tr - Iki(^o) - 1

> (1 - S'lß)\\etW2(bo)\\2tTl

> (1 - 5'1/8)(1 + 51/16)_1/2||e/i/2(Z?,-)l|2)Tr

> (1 - (51/32)||efI/2(è;)||2)Tr •

This ends the proof of the last part of the theorem.

Proof of Corollary 0.2. As for the Corollary in the Introduction, it follows

readily from the Theorem, by taking n 13 Oo Oi O, once we observe

that, since O is positive, it is selfadjoint, so

sup{||<I>(x)||2iTr I X e Pi, ||x||2Tr =1}
SUp{||<l>(x)||2iTr I X G Pi, X X*, ||xI!2 Tr

1 }

and also by noticing that if a G P\ is such that x x* then ||0(|x|)||2Tr >
||0(jc)||2Tr. Indeed, this is because by approximating a by step functions

(through spectral calculus) we may assume x CiPi for some real scalars

ci and finitely many, mutually orthogonal projections of finite trace pt. Then,

taking into account that 0(p/),0(p7) > 0 implies Tr(0(p/)0(py)) > 0, we get:

II^Wl.Tr EijCiCj^(®(Pi)4»(Py))

< Ici 11 CITr(0(p,)<I)(pj)) ||3>([x[)iiTr •

2. Applications

We shall apply Theorem 0.1 to a case when the semifinite algebras are in
fact commutative. We mention that the noncommutativity will be implicitly
present though, through the consideration of the positive maps. Note also that

in the proof of the Corollary below, only part (i) in the conclusion of the

Theorem is being used. In turn, the proof of this part of the Theorem is

relatively short.



ON CONNES' JOINT DISTRIBUTION TRICK 65

COROLLARY 2.1. Let T (tkk*)k,k'elr ^ ß symmetric matrix with non-

negative entries, only finitely many of which are non-zero on each row and

column and with tkkt > 1 whenever different from 0. Assume that for some

a > 0 and 6 > 0 the following conditions are satisfied :

(a) There exists a positive (possibly unbounded) function v: K —» R^_ such

that Tv av.

(b) If we denote ||r|| sup{||77?||2 | b G £2(K). \\b\\2 1}, then

a > ||r|| > (1 - 62/2)a, in which we denoted by || ||2 the norm,

in f(K).
Then there exists a finite non-empty subset F C K such that

yyvi < (a)4öi/4yyvi,
kedF keF

where dF {k1 G K \ F | 3k G F with tw ^ 0}.

Before deriving 2.1 above from Theorem 0.1, let us point out right away
a simple consequence of the hypothesis of 2.1, needed below, and which is

in fact contained in the first 3 lines of the proof of 3.2 on page 281 of [Po3].

LEMMA 2.2. Let T (tkk/)ky,zK be a matrix with non-negative entries
and only finitely many tkk> f 0 on each row and column. Assume there exists

a > 0 and v: K —> R3j_ such that Tv av. Then we have av(k)/v(k/) > t^*,
for all k, k! G K.

Proof For each subset S C K denote by T(S) {k' e K |

3k G S) with t-kk' f- 0}. Also, if w: K C then ws denotes its restriction

to S. With these notations we have avs (TvT(S))s • Thus, if k! G T(S)
and k G S is such that tkki 0 then av(k) > v(kr)tkk'. If tkk> 0 there is

nothing to prove.

Proof of 2.1. Let X a~l and O XVTV~l, where V is the diagonal
matrix over K with entries v(k) vk, k G K. Note that defines a bounded

dcf
positive linear operator from P £°°(K) into itself such that O(l) 1.

Let Tr denote the trace on P given by the weights (vj)keK on K, i.e., if
b G P £°°(K) then

II^II l.Tr ~ 1^1^ *

keK

For a,b: K —> C, at least one of which has finite support, we denote
(a,b) J2keKakbk. For each b G P £°°(K) with finite support we then
have :
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Tr(0(fc)) (<E>0), V2(l)) (b,XVTV~lV\l))
(6, AV7V(1)> V2(l)) Tr(£)

Thus TroO Tr. In particular, by Kadison's inequality, this implies
||^(ß)||2,Tr ^ lkll2,Tr' G L2(P,Tv).

Since j|AJj| > (1 — 62/2), it follows that 3 To C K finite such that

To =f0 (Ar)Fo satisfies 1 > ||To§ > l—62/2. By the classical Perron-Frobenius
theorem applied to To (which is a finite symmetric matrix with nonnegative
entries) it follows that there exists bo G £°°(K) ~ P, supported in the set To,
with bo(k) >0, VT, and (bo, bo) 1, such that Tobo > (1 — Ö2/2)bo. Thus,
ATT0 > (1 -62/2)b0.

Let then b V~l{bo) G £°°(K) and note that

IHI2,Tr (V-l(b0),V2V-\b0))<&o,&o> 1
•

Moreover, we have:

||<E>0) - 6||2iTr < 2 - 2Tr(0(W
2-2<Ay-1r(feo),V0o))
2-2{XT(bo),bo >

< 2 - 2(1 - <52/2) 262/2 62

Thus ||T — <D(T)||2 Tr < <5 and ||0(T)||2Tr > 1 — 6, while ||T||2Tr=l.
By Theorem 0.1 it follows that if 6 < 5~32 then there exists a finite

spectral projection e of b such that ||<D(e) — e 112
Tr < H ^ ||2 Tr * ^0te ^at

by approximating if necessary e in the norm || ||2Tr by projections which

are supported on finite subsets of K, we can obviously assume e itself is

supported on a finite subset of K.
In particular we have:

||(1 - e)<l>(e)\\lTr < ||(1 - eme)\\lTr + \\e - e®(e)\\lTr

\\e-®(e)\\lTT<6l/4\\e\\lTr.

Let F C K be the support set of £ G £°°{K) ~ P. By Lemma 2.2 we have

v~lvko > Atkk0 for all ko,k G K for which 7^ 0. Since t^{] > 1 for such

k, k0, we get (O)m0 Av^lVkQtkko > A2, for all k, k0 G K for which the entry
(k,ko) of O is nonzero. In particular, this shows that 0(e)(l — e) > A2XdF,

where XdF G £°°(K) is the characteristic function of dF C K. Thus we have
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A4 YVkllA2Xf lll.Tr
kedF

< ||(i - «)4(<!)l!2 Tr < â"4lkl]ï,i>

S,/4X>I
k£F

giving in the end the estimate :

<a46l/4^v2k,
k£dF keF

thus completing the proof.

COROLLARY 2.3. Let T (aki)keK,ieL be a bipartite graph, with K and

L labeling its even and respectively odd vertices and a^i being the number

of edges between the vertices k and L Assume there exist a > 0 and

v (vk)keK> with vk > Oyk e K such that TVv av. Then Y satisfies

the Kesten-type amenability condition ||r||2 a if and only if it satisfies the

F0lner-type condition :

e > 0, 3 F C K, finite, F 7^ 0, such that
kedF keF

Moreover, if this is the case, then T will satisfy the above F0lner condition

for any other weight vector w (wjfik > 0 with Trlw aw.

Proof Simply apply 2.1 to T — TT1. Note that this statement can be

easily derived from Corollary 0.2 in the introduction as well.

Weighted bipartite graphs have become of particular interest in recent years
due to their occurence in the Jones theory of subfactors of finite index ([J],

[GHJ]). Thus, the consecutive inclusions of the higher relative commutants of
a subfactor N C M of finite index, \M : N] < 00, are described by a pointed,

bipartite graph called the standard, or principal graph of N C M.
Moreover, TNiM has a canonical weight vector v, given by the square roots

of the local indices in the Jones tower, satisfying TT{v [M : N]v, when

N C M satisfies a certain extremality conditions, and TTlv [M : AHmm v,
in general, [M : A^min being the minimal index for N C M ([Hi]).

The amenability condition for such graphs, and more generally for arbitrary
weighted bipartite graphs T, a,v, has been considered by the author in
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several papers and lectures starting in 1988, initially in the form of the

Kesten type condition in 2.2 (see e.g., [Pol,2,4]). The Fplner-type condition

was first considered in [Po3] and the equivalence of the two conditions,
for graphs of subfactors, was shown in [Po3,4] (see also [Po5] for an

operatorial proof). Both these equivalent notions of amenability are important
in the classification of subfactors ([Pol,2,3,5]). Thus, it has been proved that

hyperfinite subfactors with amenable graph are completely classified by their

higher relative commutants invariant (the standard invariant).
The above Corollary 2.3 shows that in fact the equivalence between the

two notions of amenability holds true in a very general setting, for all bipartite
graphs. This includes a more general class of graphs that appear in the theory
of subfactors. To describe them, let us first note the following:

LEMMA 2.4. Let N C M be an extremal inclusion of type II\ factors and

assume Q C N (respectively M C P) is a factor such that dim(ß/ ON) < oo

(resp. dim(MfHP) < oo Then the sequence of inclusions offinite dimensional

algebras Qf H N C Q' fî M C Q' D M\ C (resp. M'flf C iV'nf C

N[ H P C )y in which Nj,Mk give a Jones tunnel-tower for N C M, with
their corresponding traces, are described by a bipartite graph T with a weight
vector ~t — (tk)k£K such that IT1?^ [M : N]t.

Proof. The proof is identical to the proof of 1.7 in [Po6].

Definition 2.5. Weighted bipartite graphs T, aft associated to an

extremal subfactor N C M, with a [M : N] < oo, and to a factor Q c N,
with dim(ß/ PlAO < oo (respectively M C P, with dim(M/ DP) < oo), like
in 2.4, are called I-semi-standard graphs (resp. r-semi-standard graphs). From
2.3 we can thus immediately infer:

COROLLARY 2.6. A semi-standard graph T associated to a subfactor
satisfies the Kesten-type condition ||r||2 [M : N] if and only if it satisfies

the Fqlner-type condition:

\Je > 0, 3 F C K, finite, 0, such that
k£dF k£F

Note added in proof. After this paper had been accepted for publication,

we learned that A. Zuk had recently obtained a statement similar to the

above Corollary 2.1, i.e., the equivalence between the Kesten and the Fplner

type amenability conditions for arbitrary weighted graphs (cf. Chapter 6 in
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"Sur certaines propriétés spectrales du laplacien sur les graphes", University

Paul Sabatier, Toulouse, thesis 1996). He proved this result by using different

methods than ours. Note that Zuk's result generalized (unknowingly our

previous similar statement which only covered the particular graphs coming

from subfactors ([Po2,3,4]). On the other hand, our Corollary 0.2 in the

present paper proves (by using Connes' distribution trick) an equivalence

between Kesten and Fplner type amenability conditions that is sensibly more

general than all these prior results.
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