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ON CONNES’ JOINT DISTRIBUTION TRICK
AND A NOTION OF AMENABILITY FOR POSITIVE MAPS

by Sorin POPA ')

(0. INTRODUCTION

A key technical result in A. Connes’ proof of the uniqueness of the
injective type II, factor is a perturbation lemma, showing that if two
positive, self-adjoint elements by, b; in a von Neumann algebra with a
semifinite trace Tr are close to one another in the Hilbert norm given by
Tr, ||bo — b1||, 1, < €, then most of their spectral projections are also close:
|es(bo) — es(bD) ||, 1 < f(e)|les(bo)l|, 1> With f(e) — 0 as e — 0. This result
has since then become an indispensable tool in the analysis of type II; factors
and semifinite von Neumann algebras in general. Actually, such estimates
are known to be of basic importance in classical real analysis as well. But
while elementary to prove for functions, they become quite non-trivial in the
‘noncommutative framework’ of the operators on the Hilbert space and were
poorly dealt with before Connes’ result.

The solution he gave to this is amazingly simple and ingenious, yet using
only elementary functional analysis: since one would obviously like by, b;
to commute, e.g., to be the coordinate functions on R?, then simply define
a measure u on the positive quadrant of R? by requiring it to have the
same joint distribution in the variables x,y as bg.b; do with respect to Tr,
Le., u([s.oc) x [t.oc)) = Tr(eg(bo)e,(b1)). This perfectly determines p and
transfers the estimates in the Hilbert norm given by the trace, for by, b; and
their spectral projections, into the same estimates for Hy(x,y) = x, Hi(x,y) =y
in L*(p), i.e, in a commutative setting !

'Y The author acknowledges support from the “Fonds National Suisse de la Recherche
Scientifique”.
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Note that the use of the L?-norms in all this argument is imposed by the
joint distribution trick and that, in fact, this requires a delicate handling of
norm calculations, including the use of the Powers-Stgrmer inequality and of
convexity properties of the Hilbert norm.

It 1s precisely the convexity of the Hilbert norm that we will further exploit
in this paper so as to derive, by a slight adaptation of Connes’ joint distribution
trick and of the rest of his argument in [C], the following more general result:

THEOREM 0.1. Let Py, P, be semifinite von Neumann algebras with normal
semifinite faithful traces, both of which are denoted by Tr. Let ®@;: Py — P,
Jj=0,1,...,n, be positive, linear maps satisfying the conditions:

(1) (1) =1, Tro®; <Tr, j=0,1,...,n
) sup{|| D, 1, | x € Pr, lxllyp <1} <1, j=0,1,...,n.

Let 6 > 0 be such that § < (5n)™>* and by, by,...,b, € P\, satisfy the
conditions :

3 bill, 1, = 1. 1Dl > 16, V)
4) || Do(bo) — (Dj(bj)Hz,Tr < 6, Vj.
Then there exists s > 0 such that
() [|Poles(bo)) — @ilesb)l r, < 6"/ |lesbo)ll.

Moreover, if @y also satisfies Tro®y = Tr, then there exists s > 0 such that,
in addition to (1), we have

(ii) |Tr(es(bo)) — Tr(es(h)))| < 61 Tr(es(bo)), Vj
and

i) || @;(esBly g > (1 = 8)lesBlly g, Vi

Our interest in such a statement (which at first may seem a bit long and
technical) comes from the following simple example: let P = P, = £°°(G),
for G a discrete group, with Tr implemented by the counting measure on G.
Take both @o(f) = @,(f) to be the Markov operator (1/n)> 7, L, (f), where
{g1,...,9,} 1s a finite, self-adjoint set of elements of G, and L, denotes
the left translation operator by g;. Note that @y, D, satisfy (1), (2) and that
if {g1,...,9,) contains the neutral element of G and generates G, then
condition (3) for @, and all 6 > 0 amounts to Kesten’s amenability condition
for (G;g1,---,9n), requiring that the spectral radius of the Markov operator
is equal to 1 ([K]). Assuming it is satisfied, let € > 0 and b € ¢*(G) be such
that ||b|l, = 1, ||@1(D)], > 1 — &, where § = (¢/n*)*. Then by = by = |b]

ko
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clearly satisfy conditions (3) and (4). By part (iii) of the theorem, we thus have
a spectral projection e of by = by such that | ®i(e)|, > (1 —&/n*)le|l, .-
This clearly implies that if F C G is the support set of ¢ then F is finite and
e-invariant for {g1,...,g,}, thus showing that the group G satisfies Fglner’s
amenability condition ([F], see also [Gr]).

So the above theorem can in fact be viewed as a general principle for
positive maps between semifinite von Neumann algebras, leading from a
“Kesten type condition” ((2) and (3) in our case) to a “Fglner type condition”
((ii1) in our case). To emphasize this more clearly we restate Theorem 0.1 for
n=1, ®y = Py, introducing along the lines a definition of amenability for
positive maps between semifinite von Neumann algebras.

COROLLARY 0.2. Let Pi,P, be semifinite von Neumann algebras with
normal semifinite faithful traces denoted by Tr. Let ®: Py — P, be a positive,
linear, unital, Tr-preserving map. Then ® satisfies

Sup{Hq)(x)“2,Tr .x < Pl? HXHZ,Tr - 1} =1
if and only if it satisfies

H (D(e) HZ,Tr
sup{ —

el | e € P(P1),e #0,Tr(e) < o0} = 1.
2,Tr

DEFINITION 0.3. A positive, linear, unital, Trace-preserving map @ be-
tween two semifinite von Neumann algebras Py, P, is called amenable if it
satisfies any of the equivalent conditions :

(a) Kesten type condition : sup{||<I>(x)||2’Tr ! x € Py, Htz,Tr — 1} =1;

(D(e) IIZ,Tr

(b) Fglner type condition : sup{ H Telom |e € P(Py), e £ 0, Tr(e) < oo} = 1.

As an exemplification of this point of view, we will show in the last part
of the paper how one can obtain a Fglner type amenability condition for

weighted bipartite graphs, from a Kesten type amenability condition on such
graphs.
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1. PROOF OF THE THEOREM

Let X = R3 \ {0} and Hy(x,y) =x, Hi(x,y) =y, i=1,2,...,n. As in
([C], page 77), it follows that

pi(Ao X A;)  Tr(@o(ea, (b)) Pi(ea, (b))

for A; C Ry, 0 <j < n, Borel sets such that for each i > 1 either 0 ¢ Ay
or 0 & A;, defines a Radon measure 1; on X, which satisfies the properties:

@ [fEHDI, ,, = Te(@«f|(B)) (resp., Hf(Hi)“iM = Te(@i(f['(B)) <
Hf(bi)lli,n) for all Borel functions f: [0,00) — C with f(0) = 0 and
f(by) € L'(Py,Tr) (respectively f(b;) € L*(Py,Tr)), i=0,1,...,n.

(b) / Jo(Ho)fi(Hy) dpi = Tr(Do(fo(bo)@i(f (b)), for all f;: [0,00) — C Borel

X
with £(0) =0 and fi(b;) € L*(P;,Tr), Vi=0,1,...,n.

©) [lfo(Ho) — filH)Il, . = | Po(fo(bo)) — @i(fi(b)) |, 1, for all f; as in (b).

(d) ||Ho — H; H;M = Tr(@o (b)) + Tr(Di(b;)) — 2 Tr(Po(bo)Di(by)) < 66.
Proof of (a)—(d). Indeed, (a) and (b) are clear by the proof of I.1 in [C]

and the definition of p;. Further on, by (a), (b), (1), and Kadison’s inequality

(which asserts that positive, linear, unital maps ¢ between C* algebras satisfy
0(b)p(b) < p(b?) for any b = b*), we get:

folHo) — FH)3 .. = WfoHI3 , + IfED3,, — 2Re / fo(Ho)f:(H) dp
JX

= Tr(DPo(fo(bo)*fo(bo)))
+ Tr(Pi(fi(b:) *£i(b))) — 2 Re Tr(Po(fo(bo)) Di(f (b))
> Tr(Po(fo(bo))* Do (fo(bo)))
+ Tr(®:(fi(b:))" Pi(fi(b:))) — 2 Re Tr(Po(fo(bo)) D:(fi(D:))")
— [|Dofo(bo)) — PiFiB)I3 1 -
This proves (c). Then (d) is clear by noticing that the hypothesis and the
Cauchy-Schwarz inequality imply :
Tr(@o (b)) + Tr(Pi(b7)) — 2 Tr(Po(bo) Pi(by)
< Ti(bp) + Tr(b7) — 2 Tr(Po(bo) Pi(b:)
=2 = 2Te(Do(bo)Di(b;))
< 2 — 2Tr(@g(bo)*) + 26
<2(1— (1 —6)*)+26 <66,
thus ending the proof of properties (a)—(d). L]
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Proof of (i) in the Theorem. To prove (i), remark that we have, like in
proof of 1.2.6 in [C], the estimate:

2
/ “6[1/2(H0) — et1/2(Hi)|l2,p,,- dr
Ry

= |\Hg — H? ||, , < |1Ho — Hill, ,,[[Ho +Hin,‘u,- :

But (d) implies ||Ho — Hill, , < (66)!/% and (a) implies |[Ho + Hill, ,, <
1Holl, ., + I1Hil5,,., < l1Pollym + 1bill, . = 2. Thus, by applying (c) to the
functions fi = Xp1/2,00)> 0 <i<n, for each t > 0, and summing up the
above inequalities over i we obtain

[ > Iuenraoo)  @utepailf e
(%) Toi=1

< 2n(66)'/* = 2n(66)"/* / leqs2(Bo) |5 1 dt

R}

This implies that if we denote by D the set of all # > 0 for which

90 E S | @olensz(b0)) — @ilenrs Bl 1 dt < 674 ea2(bo) 5 1, »

i=1
then
/ lear(bo)lly g, dt > 1 —5n6"/*.
D

Indeed, from [, |le, /2(]90)‘@,1} dt < 1 — 5n6'/*, by taking into account that
g(t) > 61/4||e,1/z(b0)||§’n for t € RL \ D, we would get:

J

g(t)dt > / g(t)dt
R \D

.
> 51/4/ ||etl/2(b0)”§,Tr d
R \D ;

> 5n6'/% > 2n(66)'/? .

which is in contradiction with (x).

In particular, since § < (5n)™*, we have 1 —516'/* > 0 so that D # @ .
Thus, any s > 0 with s> € D will satisfy (i).

Proof of (i1) in the Theorem. To prove (ii), note first that Tro®y < Tr
already implies that for each fixed x € P, the map L'(P,,Tr) > x; —
Tr(x®o(x;)) defines a positive functional on L'(P;,Tr), which we denote
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by @j(x). Also, if we identify LY(P,,Tr)* with P;, then 0 < x < 1
implies 0 < @j(x) < 1. Moreover, if in addition we have Tro®, = Tr,
then ®j(1) = 1, so ®f defines a positive, unital, linear mapping from P,
into Py = L'(Py, Tr)* satisfying Tro®} = Tr. Consequently, if we denote
@ = Pfo®;: Py —» Py, 1 <i < n, then ®(1) =1, Tro®, < Tr, Vi,
1 <i<n, and we have the estimates:
1D(Br) — bolly 1 = @@ 1, + 160][3 7, — 2 Tr(DE(Di(B:))bo)

< 2 = 2Tr(@i(bi)Po(bo))

= 2+ [|®o(bo) — Pilhi) |3 1, — Do) I3 1, — 1Pi(B)[3 7,

<2462 -2(1 6% <26,

In particular, if we denote &' = (26)'/? then the above implies :
II(I)g(bl.)HZ,Tr —>— HbiHQ.,Tr - (25)1/2 =1- 5/-

Altogether, this shows that we can apply the first part of the proof, with
@) =id, ®},..., D) instead of Dy, Py,..., D, and ¢ instead of &, with the
same by, b1, ..., b,, to obtain that the set D’ of all # > 0 for which

S lleasz(bo) — Plen G5 1, < 8" llearn o)l x,

i=1
satisfies

lea/2(Bo)|2 ¢ dt > 1 — 5n8"/*.
J D’ ‘

Note that for + € D’ we have:
lepr2(b0) — @j(enr ) 3y < 6 lenrnBo)l 1,
for all i=1,...,n. Due to this we also get:
Tr(en2(0)) = llear2 (B3 1,

> [ @ienr i)l g > (1= 8" lenszbo)5
= (1= 8"*Y Tr(en 2 (bo)) > (1 — 26" Tr(e,i 2 (o))

for all t€ D' and all i =1,...,n. Let then D] be the set of all + € D' for -
which Tr(e,2(b;)) < (1 + 511/ 16)Tr(e,1 s2(bp)). It follows that we have:
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5171 / Tr(e,i,2(bo)) dt < / (Tr(e,i,2 (b)) — Tr(eps2(bo))) dt
D'\D! D'\D!

= / Tr(e,l/z (b;)) — Tr(eq2 (bp))) dr
D/

L / (Te(en 2 (o)) — Tr(ep (b)) dt
D |
< / (Tr(e, (b)) — Tr(e,a(b) di
R*\D’
+2(5/1/8/ Tr(etl/z(bo)) dr
b

< / Tr(e,»(bo)) dt + 26"/
R* \D/
< 58"t 108" < 36118

in which we used, in the previous estimates, the identity

(Tl’(efl/z(b,‘)) — Tr(e,l/z (bo))) dr = / (Tr(efl/: (b())) — Tl'(eﬂ/z (b,))) dr

D’ R*\D/

(which follows from the equalities

161113 1, = /R Tr(epa(by) dr = / Tr(ep/2(bo)) dt = ||bol[5 1)

R}

and the fact that 5n8’"/® < 1.

It thus follows that if we put D" = ()_, D;N D and take into account
that § < (5n)73%, then we get:

/ Tr(e,12(bg)) dtz/ Tr(e,i2(bp)) dt — Z/ Tr(e,/2(bg)) dt
" DND’ 1

"\D;
> 11— 5n61/4 — 5115'1/4 — 3115'1/16
>1-516%%>0.

Thus D” # @. But if s > 0 is such that s> € D then from the above
we have

| Tr(es(bo)) — Tr(es(b))| < 6/ Tr(e,(by)),

, which ends the proof of (i1).
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Proof of (ii1) in the Theorem. Finally, (iii) follows now immediately from |
the last inequality above, since we have:

| Pi(es(b) ||, 1 > II(DS((Di(es(bi)))Hz,Tr
> [les(bo)lly 1 — lles(bo) — Di(es(b)) |, 1
> (1= 8"%)lleq s bo)ll
> (1= 850+ 61972 e s (b))
> (1= 6)leqrn®)y 1y -
This ends the proof of the last part of the theorem.  []

Proof of Corollary 0.2. As for the Corollary in the Introduction, it follows |
readily from the Theorem, by taking n =1, &y = ®; = O, once we observe
that, since @ 1is positive, it is selfadjoint, so

sup{HCD()c)HZ,Tr I x€ Py, |xll,n = 1}

= Sup{ “(D(X)HZ,Tr ' X< Pl: X = X*’ "xHZ,Tr - 1} 2

|®(x)||, 1,- Indeed, this is because by approximating x by step functions
(througH spectral calculus) we may assume x = ) .c;p; for some real scalars
¢; and finitely many, mutually orthogonal projections of finite trace p;. Then,
taking into account that ®(p;), ®(p;) > 0 implies Tr(P(p;)D(p;)) > O, we get:

and also by noticing that if x € P; is such that x = x* then | ®(|x|)||,, >

D@5 1 = 2y, €& TH @)D (p)))

< 3, leil g Te@@a@@py) = | @(xDf 4, -

2. APPLICATIONS

We shall apply Theorem 0.1 to a case when the semifinite algebras are in
fact commutative. We mention that the noncommutativity will be implicitly
present though, through the consideration of the positive maps. Note also that
in the proof of the Corollary below, only part (1) in the conclusion of the
Theorem is being used. In turn, the proof of this part of the Theorem 1is
relatively short.
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COROLLARY 2.1. Let T = (tw)exck be a symmetric matrix with non-
negative entries, only finitely many of which are non-zero on each row and
column and with ty > 1 whenever different from 0. Assume that for some
a >0 and § > 0 the following conditions are satisfied :

(a) There exists a positive (possibly unbounded) function v: K — R such
that Tv = aw. |

(b) If we denote ||T| = sup{||Thl, | b € C*(K), ||bll, = 1}, then
a > |T| > A - §/2)a, in which we denoted by || ||, the norm
in >(K).

Then there exists a finite non-empty subset F C K such that

Z th < (a)451/421),3,

k€OF kEF
where OF = {k' € K\ F |3k € F with 1y # 0}.

Before deriving 2.1 above from Theorem 0.1, let us point out right away
a simple consequence of the hypothesis of 2.1, needed below, and which is
in fact contained in the first 3 lines of the proof of 3.2 on page 281 of [Po3].

LEMMA 2.2. Let T = (tiw)rjrex be a matrix with non-negative entries
and only finitely many ty. # 0 on each row and column. Assume there exists
o« >0 and v: K — R such that Tv = awv. Then we have av(k)/v(k') > ti,
for all k, k' € K.

Proof. For each subset § C K denote by 7(S) = {k' € K |
Jk € S, with tw # 0}. Also, if w: K — C then ws denotes its restric-
tion to §. With these notations we have avs = (Tvreg))s. Thus, if k¥ € T(S)
and k € S is such that i # 0 then av(k) > v(k)ty . If tr = O there is
nothing to prove. [

Proof of 2.1. Let A=a"! and ® = A\VTV~!, where V is the diagonal

matrix over K with entries v(k) = vy, kK € K. Note that ® defines a bounded

positive linear operator from P & ¢°°(K) into itself such that d(1) = 1.

Let Tr denote the trace on P given by the weights (’UZf)keK on K, ie., if

b € P =/>*(K) then
1ol 5 =D 1belo;
keK
For a,b: K — C, at least one of which has finite support, we denote

(a,b) = 3 ek axbi. For each b € P = ¢°(K) with finite support we then
have :
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Tr(D(b)) = (D), VX(1)) = (b, \VIV'V(D))
= (b, \VIV(1)) = (b, V*(1)) = Tr(b).

Thus Tro® = Tr. In particular, by Kadison’s inequality, this implies
D@, < lall, 7> Va€ L*(P,Tr).

Since [[AT| > (1 — §2/2), it follows that 3 Fy C K finite such that
To =r, (AT)F, satisfies 1 > ||Tg|| > 1—6%/2. By the classical Perron-Frobenius
theorem applied to 7Ty (which is a finite symmetric matrix with nonnegative
entries) it follows that there exists by € £*°(K) ~ P, supported in the set Fy,
with bo(k) > 0, Vk, and (bo,b0> =1, such that Tpyby > (1 — 52/2)b0 Thus,
ATby > (1 — 6% /2)by.

Let then b = V=1(by) € £°°(K) and note that

15113 1 = (V™' (B0), VEV "1 (B)) = (bo, bo) = 1.
Moreover, we have :

|D(b) — blJ5 1 < 2 — 2 Tr(D(b)b)
=2 — 2{AV ' T(by), V(bo))
=2 — 2(AT(bo), bo)
<221 —68%/2) =26%/2=6.

Thus ||b — (D(b)Hz,Tr < 6 and [|<I>(b)l[2’Tr >1— 06, while ||b|)2,Tr =1,

By Theorem 0.1 it follows that if § < 5732 then there exists a finite
spectral projection e of b such that ||®(e) —el|, , < §'4|lell, - Note that
by approximating if necessary e in the norm | ||, by projéctions which
are supported on finite subsets of K, we can obviously assume e itself is
supported on a finite subset of K.

In particular we have:

(1 - e)(ID(e)H;Tr < || - 6)@(6)”;% +|le - eq)(e)llé,Tr

= lle — @@ 1, < 6"*llell5 1 -

Let F C K be the support set of e € £°°(K) >~ P. By Lemma 2.2 we have
v, lvko > My, for all ko,k € K for which #4, # 0. Since #, > 1 for such
k, ko, we get (P, = A, Ykt > A2, for all k, kg € K for which the entry
(k,ko) of ® is nonzero. In particular, this shows that ®(e)(1 — e) > \xar,
where yor € £°°(K) is the characteristic function of OF C K. Thus we have
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Yok = Vel
k€eOF

< (1 = @51 < 84 llells m

= 51/427);%

keF

giving in the end the estimate:

Z vE < a451/4§:v£,

k€OF keF

thus completing the proof. [

COROLLARY 2.3. Let T = (ay)rex.icL be a bipartite graph, with K and
L labeling its even and respectively odd vertices and ay being the number
of edges between the vertices k and . Assume there exist o > 0 and
7 = (vrek, with v > 0,Yk € K such that TT'0 = av. Then I' satisfies
the Kesten-type amenability condition ||FH2 = « if and only if it satisfies the
Folner-type condition :

Ve >0, 3F CK, finite, F # @, such that y vy <e ) v;.
kEOF keF

Moreover, if this is the case, then I" will satisfy the above Fglner condition
for any other weight vector W = (wy)x > 0 with TT W = oab.

Proof. Simply apply 2.1 to T = I'T". Note that this statement can be
easily derived from Corollary 0.2 in the introduction as well. [

Weighted bipartite graphs have become of particular interest in recent years
due to their occurence in the Jones theory of subfactors of finite index ([J],
[GHJ]). Thus, the consecutive inclusions of the higher relative commutants of
a subfactor N C M of finite index, [M : N] < oo, are described by a pointed,
bipartite graph I'yu, called the standard, or principal graph of N C M.
Moreover, I'y » has a canonical weight vector ¥, given by the square roots
of the local indices in the Jones tower, satisfying I'T"'¢' = [M : N]¥, when
N C M satisfies a certain extremality conditions, and T'T'0 = [M : Ny U,
in general, [M : N]nin being the minimal index for N C M ([Hi]).

The amenability condition for such graphs, and more generally for arbitrary
weighted bipartite graphs I', o, v, has been considered by the author in




68 S. POPA

several papers and lectures starting in 1988, initially in the form of the
Kesten type condition in 2.2 (see e.g., [Pol,2,4]). The Fglner-type condition
was first considered in [Po3] and the equivalence of the two conditions,
for graphs of subfactors, was shown in [Po3,4] (see also [Po5] for an
operatorial proof). Both these equivalent notions of amenability are important
in the classification of subfactors ([Pol,2,3,5]). Thus, it has been proved that
hyperfinite subfactors with amenable graph are completely classified by their
higher relative commutants invariant (the standard invariant).

The above Corollary 2.3 shows that in fact the equivalence between the
two notions of amenability holds true in a very general setting, for all bipartite
graphs. This includes a more general class of graphs that appear in the theory
of subfactors. To describe them, let us first note the following:

LEMMA 2.4. Let N C M be an extremal inclusion of type Il factors and
assume Q C N (respectively M C P) is a factor such that dim(Q' NN) < oo
(resp. dim(M'NP) < oo). Then the sequence of inclusions of finite dimensional
algebras Q' "N Cc O'NM Cc O NM;, C ... (resp. MNP C NNP C
N{ NP C...), in which N;,My give a Jones tunnel-tower for N C M, with
their corresponding traces, are described by a bipartite graph T with a weight
vector f = (ty)kex such that TT'f = [M : NIt.

Proof. The proof is identical to the proof of 1.7 in [Po6]. [

DEFINITION 2.5. Weighted bipartite graphs I', o, f associated to an ex-
tremal subfactor N C M, with o« = [M : N] < oo, and to a factor Q C N,
with dim(Q’' N N) < oo (respectively M C P, with dim(M’' N P) < co), like
in 2.4, are called [-semi-standard graphs (resp. r-semi-standard graphs). From
2.3 we can thus immediately infer:

COROLLARY 2.6. A semi-standard graph 1 associated to a subfactor
satisfies the Kesten-type condition ||FH2 = [M : N] if and only if it satisfies
the Fplner-type condition :

Ve >0, 3F C K, finite, F #* &, such that Zt,%<£2t,z‘.
kEOF keF

Note added in proof. After this paper had been accepted for publication,
we learned that A. Zuk had recently obtained a statement similar to the
above Corollary 2.1, i.e., the equivalence between the Kesten and the Fglner
type amenability conditions for arbitrary weighted graphs (cf. Chapter 6 in
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“Sur certaines propriétés spectrales du laplacien sur les graphes”, University
Paul Sabatier, Toulouse, thesis 1996). He proved this result by using different
methods than ours. Note that Zuk’s result generalized (unknowingly!) our
previous similar statement which only covered the particular graphs coming
from subfactors ([P02,3,4]). On the other hand, our Corollary 0.2 in the
present paper proves (by using Connes’ distribution trick) an equivalence
between Kesten and Fglner type amenability conditions that is sensibly more
general than all these prior results.

[C]

[F]

[GHJ]

[PiPo]
[Pol]
[Po2]

[Po3]

[Po4]
[Po5]

[Po6]
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