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46 Y. COLIN DE VERDIÈRE

7. Statistiques spectrales

Pour ceci, voir [9], [25], [41], [45], [46].
Il s'agit d'exprimer des propriétés de nature statistique d'une suite (infinie)

de nombres.

Soit E\ < E2 < < En < • • une suite infinie de nombres réels vérifiant
la condition asymptotique suivante:

(*) lim \.
n—>00 /V

On peut alors introduire plusieurs invariants statistiques, les plus simples
étant :

- la distribution du plus proche voisin p(s),

- l'écart quadratique par rapport à loi uniforme sur un intervalle de test
de longueur /, X2(/) qui mesure la rigidité du spectre.

Par exemple, on peut poser (en supposant que ces limites existent) :

#{p<AM,<E,t,—£„<, + &}
FK 2

N-*00 N
Et de même:

E2(0 lim (#{p \E<Ep<E+l}-l)2
E-^OC

p(s) mesure donc la statistique des écarts de niveaux, alors que Z2(/)

mesure la rigidité: Z2(/) petit signifie que la suite est presque une suite

arithmétique.
Si on a un vrai spectre, la condition (*) n'est pas satisfaite en général,

mais les asymptotiques de type Weyl permettent un reparamétrage du spectre

par une fonction puissance
F' — rFar,N — C&N

de façon à ce que (*) soit satisfaite.

Des exemples : la distribution de Poisson consiste à prendre N points

répartis de façon équiprobable dans un intervalle de longueur N et la limite
quand N tend vers l'infini. Il est bien connu qu'on a alors:

p(s)e~s

De même, on montre que

E\l)l



UNE INTRODUCTION À LA MÉCANIQUE SEMI-CLASSIQUE 47

S2a(L) /

\GOE GOE

\ •

\ /
\ Poisson

0 0 L

Figure 11

Les statistiques spectrales : Poisson et GOE

Les spectres génériques ne sont pas poissonniens, ne serait-ce qu'à cause de

la répulsion des niveaux. Il est connu depuis Wigner et von Neumann (^1930)
que la condition Xp \p+\ définit un sous-ensemble de codimension 2 de

l'espace des opérateurs symétriques. On s'attend donc à: p(0) 0 pour un
hamiltonien quantique générique. Cette répulsion de niveaux n'est pas satisfaite

dans les cas complètement intégrables; par exemple le tore R2/Z2 a toutes ses

valeurs propres dégénérées Mais le cas complètement intégrable est atypique
comme on le sait depuis Poincaré.

GOE: Décrivons brièvement la théorie GOE. On considère des ensembles

(au sens de la thermodynamique) de matrices symétriques N x N dont les

éléments atj. i < j sont des variables aléatoires normales indépendantes de

même loi. On s'intéresse alors aux statistiques spectrales lorsque N oo. On

montre que le spectre se répartit dans un intervalle (—cy/N, c\/N) avec donc

un écart moyen 2c/y/N. On renormalise en considérant \'n ^ \n et on

peut alors calculer les limites thermodynamiques des statistiques spectrales.
Le livre de Mehta [41] en donne un exposé détaillé.

p(s) est proche d'une courbe ase~s~!b suggérée par Wigner.

GUE: De même si on s'intéresse aux matrices hermitiennes on obtient
les statistiques GUE.

Des expériences numériques :

On s'attend donc, et cela a été explicitement proposé par des physiciens
d'Orsay ([9]) dès 1984, à ce qu'à un flot géodésique chaotique corresponde
une statistique de type GOE pour le spectre.

X2(/) — —— ln/ + o(l), / —> oo
nTl7T
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Les résultats numériques sont curieux: cela marche pour le stade ou le

billard de Sinaï (tore de dimension 2 privé d'un disque), mais les expériences
menées sur certains triangles géodésiques du disque de Poincaré dont la

dynamique classique a les mêmes propriétés que celles décrites plus haut

semblent montrer une dichotomie entre les triangles qui permettent de paver
H, par exemple les angles (7r/2, 7t/3, tt/1) et plus généralement l'infinité de

possibilités

,7T 7T 7T 1 1 1

(— ; —
; ~) *

1 1 < 1
•

p q r p q r

pour lesquels GOE ne marche pas et ceux qui ne pavent pas, par exemple

(7t/2, 7t/3. 2tt/15), pour lesquels GOE était vérifiée.

Cette dichotomie n'était pas la bonne comme l'ont vu il y a quelques
années E. Bogomolny, B. Georgeot et M.-J. Giannoni.

Il se trouve que, parmi les triangles (une infinité) qui pavent //, un certain

nombre fini dont la liste est connue correspondent à des sous-groupes dits

arithmétiques de SL2(R) et que ce sont ceux-là pour lesquels GOE n'est pas

satisfaite. Je ne vais pas me lancer dans une définition précise des groupes
arithmétiques, mais disons que l'arithméticité a comme conséquence une

grande dégénérescence du spectre des longueurs des géodésiques périodiques.
Cette dégénérescence est elle même reliée à une famille de symétries

quantiques particulières, appellées correspondances de Hecke. Ces symétries

supplémentaires, relativement cachées, font que ces hamiltoniens quantiques

ne sont pas génériques Luo et Sarnak ([45]) ont démontré que GOE n'est
effectivement pas satisfaite dans les cas arithmétiques.

Lorsque T — SL^iZ), H/Y est l'espace des réseaux de R2 euclidien et

si on définit, pour tout réseau z, Yn(z) comme l'ensemble des sous-réseaux

d'indice n de z, les opérateurs Tnp(z) YsZ'eY„(z) commutent entre eux

et avec À : ce sont les opérateurs de Hecke

Les statistiques GUE sont utilisées lorsqu'il n'y a pas symétrie par inversion

du temps (champs magnétiques). Montgomery a remarqué en 1973 que ces

statistiques s'appliquent parfaitement aux zéros de la fonction £ de Riemann,

ce qui est cohérent avec l'approche proposée par Connes dans [22], voir aussi

[37], [38].


	7. Statistiques spectrales

