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46 Y. COLIN DE VERDIERE
7.  STATISTIQUES SPECTRALES

Pour ceci, voir [9], [25], [41], [45], [46].

Il s’agit d’exprimer des propriétés de nature statistique d’une suite (infinie)
de nombres.

Soit £y < E, <--- < Ey < --- une suite infinie de nombres réels vérifiant
la condition asymptotique suivante :

(%) lim =~ =1.

On peut alors introduire plusieurs invariants statistiques, les plus simples
étant :

— la distribution du plus proche voisin p(s),

— I’écart quadratique par rapport a loi uniforme sur un intervalle de test
de longueur [/, Z*(/) qui mesure la rigidité du spectre.

Par exemple, on peut poser (en supposant que ces limites existent):

#{p<N|s<E, —E,<s-+ds}
N .

p(s)ds = NIEEO

Et de méme:

22 = lim (#H{p | E<E, <E+1} =D’

p(s) mesure donc la statistique des écarts de niveaux, alors que X%())
mesure la rigidité: Z?(I) petit signifie que la suite est presque une suite
arithmétique.

Si on a un vrai spectre, la condition (%) n’est pas satisfaite en général,
mais les asymptotiques de type Weyl permettent un reparamétrage du spectre
par une fonction puissance

Ey = cEy

de facon a ce que (x) soit satisfaite.

Des exemples: la distribution de Poisson consiste a prendre N points
répartis de fagon équiprobable dans un intervalle de longueur N et la limite
quand N tend vers I'infini. II est bien connu qu’on a alors:

s

p(s) =e”
De méme, on montre que

2 =1.
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Les statistiques spectrales: Poisson et GOE

Les spectres génériques ne sont pas poissonniens, ne serait-ce qu’a cause de
la répulsion des niveaux. Il est connu depuis Wigner et von Neumann (~ 1930)
que la condition )\, = A,41 définit un sous-ensemble de codimension 2 de
I’espace des opérateurs symétriques. On s’attend donc a: p(0) = 0 pour un
hamiltonien quantique générique. Cette répulsion de niveaux n’est pas satisfaite
dans les cas complétement intégrables; par exemple le tore R?/Z? a toutes ses
valeurs propres dégénérées ! Mais le cas completement intégrable est atypique
comme on le sait depuis Poincaré.

GOE: Décrivons brievement la théorie GOE. On considere des ensembles
(au sens de la thermodynamique) de matrices symétriques N X N dont les
€léments a;;, i < j sont des variables aléatoires normales indépendantes de
méme loi. On s’intéresse alors aux statistiques spectrales lorsque N — co. On
montre que le spectre se répartit dans un intervalle (—cv/N, cv/N) avec donc
un écart moyen 2¢/+/N. On renormalise en considérant )\, = %”/\,7 et on
peut alors calculer les limites thermodynamiques des statistiques_ spectrales.
Le livre de Mehta [41] en donne un exposé détaillé.

p(s) est proche d’une courbe ase=S /P suggérée par Wigner.

2
() = P1nz+o(1), [ — 00.

GUE: De méme si on s’intéresse aux matrices hermitiennes on obtient
les statistiques GUE.
Des expériences numériques :

On s’attend donc, et cela a €té explicitement proposé par des physiciens

d’Orsay ([9]) des 1984, a ce qu’a un flot géodésique chaotique corresponde
une statistique de type GOE pour le spectre.
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Les résultats numériques sont curieux: cela marche pour le stade ou le
billard de Sinai (tore de dimension 2 privé d’un disque), mais les expériences
menées sur certains triangles géodésiques du disque de Poincaré dont la
dynamique classique a les mémes propriétés que celles décrites plus haut
semblent montrer une dichotomie entre les triangles qui permettent de paver
H, par exemple les angles (7w/2,7/3,7/7) et plus généralement I’infinité de
possibilités

11
—+-+-<1,

T 1
r'’ p g r

T

P q
pour lesquels GOE ne marche pas et ceux qui ne pavent pas, par exemple
(w/2,7/3,27/15), pour lesquels GOE était vérifiée.

Cette dichotomie n’était pas la bonne comme l'ont vu il y a quelques
années E. Bogomolny, B. Georgeot et M.-J. Giannoni.

Il se trouve que, parmi les triangles (une infinité) qui pavent H, un certain
nombre fini dont la liste est connue correspondent a des sous-groupes dits
arithmétiques de SLy(R) et que ce sont ceux-la pour lesquels GOE n’est pas
satisfaite. Je ne vais pas me lancer dans une définition précise des groupes
arithmétiques, mais disons que D'arithméticité a comme conséquence une
grande dégénérescence du spectre des longueurs des gé€odésiques périodiques.
Cette dégénérescence est elle méme reliée a une famille de symétries
quantiques particulieres, appellées correspondances de Hecke. Ces symétries
supplémentaires, relativement cachées, font que ces hamiltoniens quantiques
ne sont pas génériques! Luo et Sarnak ([45]) ont démontré que GOE n’est
effectivement pas satisfaite dans les cas arithmétiques.

Lorsque T = SL,(Z), H/T est 'espace des réseaux de R? euclidien et
si on définit, pour tout réseau z, Y,(z) comme ’ensemble des sous-réseaux
d’indice n de z, les opérateurs T,p(z) = ) ey,

,@(z') commutent entre eux
et avec A: ce sont les opérateurs de Hecke ! ’

Les statistiques GUE sont utilisées lorsqu’il n’y a pas symétrie par inversion
du temps (champs magnétiques). Montgomery a remarqué en 1973 que ces
statistiques s’appliquent parfaitement aux zéros de la fonction ¢ de Riemann,
ce qui est cohérent avec 1’approche proposée par Connes dans [22], voir aussi
(371, [38].
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