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44 Y. COLIN DE VERDIERE

6.3 LA FORMULE DES TRACES SEMI-CLASSIQUES

Cette formule s’étend en une formule asymptotique (appellée formule
de traces de Gutzwiller dans la littérature) valable en toute généralité (en
particulier sans aucune hypothese de type chaos classique, le cas complétement
intégrable étant une conséquence de la formule sommatoire de Poisson) a
condition de prendre p telle que p soit a support compact, ce qui revient a
ne considérer la dynamique de 1’équation de Schrodinger que sur un intervalle
borné en temps et donc une contribution d’un nombre fini de géodésiques
périodiques, en vertu de la formule d’inversion de Fourier:

1 E—H 1 T
EIO( 7 ):27rh/RelZE/he tH/hp(Z)df.

Donnons un énoncé assez précis pour 1I’équation de Schrodinger.

THEOREME 1. Soit E une énergie non critique pour I’hamiltonien classique
H, x € C;°(R) égale a I pres de E et p(E) une fonction dont la transformée
de Fourier est a support dans |t| < T.

On suppose que les trajectoires périodiques v de Xy contenues dans
{H = E} sont non dégénérées au sens que l’application de Poincaré linéaire
P, n’admet pas 1 comme valeur propre. Soit Tiy > 0 la plus petite période
de v et m, ['indice de Morse de v comme courbe fermée et e, = O ou 1.

Alors :

1 E—E;
(6.1) 2 XE)p(=—) = Nw(E) + )  Ny(B),

J ¥
ou
(6.2) Nw(E) = C(E)Yh~""D(1 4+ O(h))
et

1 T L[ edu—i(meyte) T

6.3) Ny(E)= e’ YT (1 4+ O(h)).

27h (det(1 — P))!/?

La justification heuristique la plus simple est liée a I’'intégrale de Feynman;
donnons-la: le propagateur quantique

p(t,x,y)

noyau intégral de l'opérateur U(f) = e /% est donné selon Feyn-

man ([27]) comme une superposition d’amplitudes associées aux différents
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chemins v € Q,,; qui est U'ensemble de chemins (v: [0,7] — X tels que
Y(0) =x, () =y):

p(t,x,y) = / er [o FOOY Db gy
Qy v 1
ot £:TX — R est le lagrangien classique. Dans le cas des gé€odésiques, le
lagrangien est 1’énergie cinétique %+ 1%
Si Q, désigne maintenant 1’espace des lacets fermés parcouru en le temps
t, on obtient la fonction de partition quantique:

20 =Y e B/ = /p(z,x,x)dx :/ ot 1 LW ©)ds | o
X

t

comme une intégrale sur les lacets. L’application de la phase stationnaire,
lorsque A tend vers 0, fait apparaitre les trajectoires fermées comme points
critiques de ®(vy) = fof L(v(s),v'(s)) ds sur ;.

Dans le cas de Selberg, il se trouve que, bien que la surface X puisse
étre compliquée, I’espace €2, se décompose en composantes connexes simples,
une par géodésique périodique et que la décomposition de Z(f) en somme
d’intégrales sur ces composantes connexes permet de prévoir une formule
sommatoire exacte.

La formule de traces semi-classiques donne certes des informations sur
le spectre, mais elle a surtout une application aux problemes inverses. Par
exemple dans le cas riemannien, elle montre que le spectre du laplacien
détermine le spectre des longueurs des géodésiques périodiques.

La fonction ¢ de Riemann:

(e ]
=Y z= Il a-" »w>1

n=1 p premier
s’étend en une fonction méromorphe sur C ayant des zéros aux entiers pairs
< 0. Riemann a fait ’hypothese selon laquelle les autres zéros satisfont
R(s) = 1/2. Cette hypothése centrale en théorie des nombres est restée
improuvée depuis environ 150 ans.

Il existe des formules sommatoires ayant une analogie formelle avec celle

de Selberg pour ces zéros. A. Connes [22] vient de proposer un hamiltonien

quantique dont le spectre serait donné par ces zéros et ainsi une voie d’attaque
de I’hypothése de Riemann.
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