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6. Le cas général : LA formule des traces SEMI-CLASSIQUES

Dans le cas non complètement intégrable, la calcul approché du spectre est

impossible, comme cela a été remarqué par Einstein dans [26]. Dans les années

70 sont apparues de nouvelles méthodes que l'on désignera sous le nom de

formules de traces semi-classiques. Il s'agit de formules asymptotiques pour la

densité régularisée de valeurs propres. D'abord apparues chez des physiciens

(Gutzwiller [30], Balaian et Bloch [5], [6]), ces formules ont été justifiées
rigoureusement par les mathématiciens, d'abord dans ma thèse [12], utilisant
une approximation de l'intégrale de Feynman, puis dans les travaux qui s'en

sont inspirés, ceux de Chazarain [11] et de Duistermaat-Guillemin [23] en

utilisant les OIF.

6.1 Densités régularisées

Pour obtenir des renseignements plus fins sur la fonction (discontinue)
Nj7(E), il est agréable de la régulariser (au sens de Schwartz), on pose donc

pour une fonction p lisse, d'intégrale 1 et à décroissance rapide:

Lorsque e tend vers 0, NPe(p,) décrit une densité régularisée correspondant
à un regroupement de paquets de valeurs propres de largeur - e Autrement
dit on observe le spectre avec un grossissement 1 /e.

Np(E) J2p(E-En).
Il

En fait, on utilise souvent une famille

Pe

U
V

Figure 10

La densité spectrale régularisée
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Le lien entre la densité régularisée et l'équation de Schrödinger est

donné par la formule d'inversion de Fourier: si p(t) — f e~ltflp(pJ)dp et

Z(t) Trace^-^/^), on a:

Si on veut une analyse fine p doit être très localisée et cela implique que p est

très étalée et donc une connaissance de Z(t) (et donc de U(t)) pour t grand.
A la limite le spectre exact est lié aux solutions périodiques de l'équation de

Schrödinger qui sont donc connues pour tout t G R.
Deux échelles sont très importantes, s — h qui correspond du point de

vue classique à un intervalle de temps borné et qui prend en compte un
nombre de valeurs propres dans un intervalle de longueur ~ h qui en compte
environ hn~l et l'échelle s hn qui correspond à la séparation des niveaux

(Weyl) (et donc à une analyse fine du spectre analogue à celle donnée par
Bohr-Sommerfeld) et à un temps de l'ordre de 1 /hn~l.

La première échelle est une échelle non universelle donnée par les formules
de traces semi-classique, alors que les échelles plus fines sont (au-delà du semi-

classique) le domaine des classes d'universalités (GOE, GUE, Poisson) (voir
section 7).

L'étude à ces échelles est difficile d'accès par les méthodes semi-classiques

qui décrivent mal les asymptotiques simultanées h —> 0 et t —» oo ; ce

phénomème fondamental (et mystérieux) est appellé par certains auteurs

rupture de l'approximation semi-classique.

La limite semi-classique se décrit bien en termes de l'évolution d'une
fonction d'onde localisée de la forme:

appellé état cohérent. L'évolution semi-classique de O, U(t)0^ est donnée

lorsque t reste borné par une fonction d'onde du même type localisée au

point <Pt(Xo-,Po) °ù (ft est Ie fl°t classique. Lorsque t augmente, cette fonction

gaussienne se délocalise en un temps lié à l'exposant de Liapounov À :

qui est le temps nécessaire pour qu'une région initiale de diamètre h ne soit

plus localisée près de la trajectoire classique. Au delà de ce temps la non

linéarité de la dynamique classique joue pleinement son rôle et U(t)0 reste

localisée sur la variété instable de (x0,p0) qui s'enroule de façon compliquée
dans l'espace des phases Z.

d?XoiPp(x) céH W

r - 21 ln fi. j
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