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38 Y. COLIN DE VERDIERE

44 LE CAS DE SCHRODINGER ET L’ INTEGRALE DE FEYNMAN

Voir [27], [13].
Dans le cas de Schrodinger dépendant du temps, on obtient une
représentation a la Feynman:

p(t, X, y) o / ei [(]t £('7(5):'7,(5)) dS/hd/y .
Q

1,X,y

Bien sir, cette intégrale n’a pas de statut mathématique bien solide,
contrairement a la mesure de Wiener. On doit comprendre dvy comme une
mesure de Lebesgue.

5. LE SPECTRE SEMI-CLASSIQUE

5.1 LA FORMULE DE WEYL

Voir [8], [32].
On considere le spectre de I’opérateur de Schrodinger dans R”

s h?
H=-ZA+V-E,

ol on suppose V C* et liminf, ..o V > 0 . Alors le spectre négatif de H
- est discret; on 1’écrit:
Ei(h) < Ex(h) < --- .

Si E < 0, on considere le comportement asymptotique semi-classique de
Nu(E) =#{j | E(h) < E}.

Il se trouve que I’asymptotique de N,(E) est purement classique

1
N(E) ~ (%)n vol({Po(x,§) < E}),

ce qui signifie que chaque état propre occupe une région de volume (2mh)"/?
de I’espace des phases. C’est une des versions de la correspondance entre
volume et dimension. Cela permet parfois de déterminer le i effectif d’un
probleme de type semi-classique.
De nombreux auteurs se sont préoccupés d’obtenir des estimations du reste
du type
Ny(E) = Ch™"(1 + O(h®)) .
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La meilleure estimation générale (o« = 1) dans le cas ou E n’est pas valeur
critique de H(x,&) est celle de Hormander ([35]). Cette estimation a été
améliorée par Duistermaat et Guillemin [23] en un o(h) dans le cas (générique)
ot I’ensemble des trajectoires périodiques est de mesure nulle et Bérard ([7])
a montré que, dans le cas riemannien sans points conjugués, on peut améliorer
le reste en O(h/|1nhl). |

Cette asymptotique n’est pas vraie pour un hamiltonien arbitraire, en
particulier elle est incorrecte dans le cas des bouteilles magnétiques : la vraie
asymptotique est donné par le nombre de pavés d’un pavage par des images
de cubes standards par des plongements canoniques (voir [14]).

5.2 LE SPECTRE DANS LE CAS COMPLETEMENT INTEGRABLE : COORDONNEES
ACTIONS-ANGLES SEMI-CLASSIQUES

Voir [16], [17], [18].

Du point de vue classique, un flot hamiltonien est dit completement
intégrable si I’espace des phases admet (presque partout) un feuilletage
lagrangien en tores invariants par le flot hamiltonien. Cela correspond donc a
un hamiltonien sur le tore R"/Z" de la forme H(§).

L hamiltonien quantique naturellement associé est donc

ﬁ:H§&>
dont le spectre est formé des points
HQ2nhp), p e Z".
On peut retrouver ce spectre au moyen des conditions de quantification

[a] € 2hZ" .

En fait, il faut introduire les corrections des indices de Maslov, ce qui
correspond a remplacer Z" par un translaté p + Z".

Tout ceci peut se justifier rigoureusement.

L’analyse précise des singularités du systeme completement intégrable
nécessite l'introduction de conditions de quantification modifiées que nous
avons traitées avec Bernard Parisse en dimension 1 ([20] et [21]) et que San
Ngoc Vu est en train de traiter en toute généralité. Ces travaux permettent de
décrire pour un systeme completement intégrable avec singularités de Morse
I’asymptotique semi-classique de routes les valeurs propres.

En particulier, dans le cas d’un double puits de potentiel pair en dimen-
sion 1, nous avons décrit avec Bernard Parisse la transition du spectre pres

~
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de I’énergie correspondant au maximum local V,, du potentiel: il s’agit d’une
transition (universelle) entre les doublets de parité

Aak—1 < Agr < Agey + O(e= /My

(Max < V) et les valeurs propres régulierement espacées pour M, > V.

Ak

FIGURE 9

Le spectre du double puits symétrique

Cette approche est encore valable dans le cadre de la théorie KAM (cf.
[16]) de 2 facons différentes:

— pour décrire le spectre semi-classique d’un syteme hamiltonien proche
d’un systeme intégrable;

— en considérant le cas ou le systtme est classiquement complétement
intégrable et non quantiquement compleétement intégrable comme une pertur-
bation d’un systeme complétement intégrable.

Ce dernier cas se rencontre par exemple pour 1’étude des grandes valeurs
propres de A+V ol A est le laplacien plat sur le tore (intégrable quantiquement
par les séries de Fourier) et V en est une petite perturbation a la limite des
grandes valeurs propres.




	5. Le spectre semi-classique
	5.1 La formule de Weyl
	5.2 Le spectre dans le cas complètement intégrable: coordonnées actions-angles semi-classiques


