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43 EDP LINEAIRES AVEC UN PETIT PARAMETRE

En général, on étudiera une équation du type:

h o h. o
Plhx, =)= ) | aali,h) (5007,

|| <N
ou les a,(x,h) sont de la forme:
aa(e,h) = b j@H .
j=0
On définit alors

Po(x, ) = > b 0",

qui est appellé symbole principal de P. On supposera dans ce qui suit que
Py ne prend que des valeurs réelles.
Le but est de décrire les (des) solutions de

Phuh = O(hoo)

EXEMPLE 4.4.

2

1
P=—ZA+V—E Py=z]¢|’+ V() - E,

(valeurs propres de Schrodinger).

h du h?
72{ __——Z—Au—f—Vl/t, Po——T_H(xaf))

(Schrodinger dépendant du temps).
ATy =1, Po=g"(x, &) — 1,

(grandes valeurs propres du laplacien).

LES SOLUTIONS BKW

On considere ’action de P sur une fonction oscillante et on développe en
puissances de & :

P(a(x)eS@/my = SO/ (Po(x, S (x))a(x) + ?(Afam + Py (x, S’ (x)a(x)) +O(h*))

ot X = 0gPolx,S' ()0, et Pi(x,&), le symbole sous-principal de P, est
une fonction sur 7*X.
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Résoudre P(ae™/") = O(h?) équivaut donc a résoudre I’équation eiconale
Po(x,S'(x)) = 0, puis une équation différentielle le long des trajectoires de
X . Ces deux opérations gardent un sens pour les solutions généralisées, en
particulier, X est la projection sur X de Xp, et donc on peut lire les équations
de transport sur la variété lagrangienne.

Dans le cas de Schrodinger, 1’équation de transport s’écrit:

1
/Ya+§ASa:O.

Elle s’interprete géométriquement comme 1’invariance par le flot hamiltonien de
la demi-densité a(x)|dx|'/?. Le carré a(x)?|dx| s’interpréte bien en mécanique
quantique comme une mesure: la probabilité de présence de la particule.

Pour mettre tout cela en place, on associe, a la représentation de L a partir
d’une famille de fonctions, des superpositions de fonctions oscillantes

fx) = /eiw(“"g)/l’a(x, 0)deo .

EXEMPLE 4.5 (LA FONCTION DE AIRY). On définit

Aip(x) = (27rh)"% / ei(ﬂ‘f—%i)/hdg — h=VoAi(xh=2/3)
R

Cette fonction est associée a la variété lagrangienne
x = &2
qui admet une caustique en (0,0).

La fonction de Airy décrit en fait le comportement universel des intégrales
oscillantes associées aux singularités plis.

Ai(z)
- F\v/\\//\\/\/\vﬂ\ N

FIGURE 6

La fonction de Airy
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Le résultat net est la possibilité d’associer a toute variété lagrangienne L
vérifiant (Po)[; = 0 des solutions locales de Pu = O(h?) et méme O(h*°) si
on réfléchit un peu.

Ces solutions ne se globalisent pas toujours: ce sont les conditions de
quantification.

Dans les cas les plus simples, par exemple dans les exemples 4.6 et 4.7, il
s’agit d’une condition portant uniquement sur L : la classe de cohomologie de
de Rham de la forme de Liouville o = £dx satisfait des conditions d’intégralité
du type

la] € 272" + 1),

ol p € $Z" est Iindice de Maslov.
En effet, une fois 1’existence d’une densité invariante assurée, il reste le
probleme des phases qui sont données localement par S dont la différentielle
est la restriction a L de « (on retrouve la définition des fronts d’ondes comme
feuilles de phases constantes). La contribution des caustiques est donnée par
I’indice de Maslov qui a son origine technique dans la phase stationnaire..

EXEMPLE 4.6 (LES SERIES DE FOURIER). On considere [’opérateur N

i
sur R/2nwZ. Son symbole principal est & et la condition de quantification sur
la variété & = a est

2ma = 2mhn

soit a = hn. On retrouve comme spectre les hn, n € 7. et les séries de Fourier.

EXEMPLE 4.7 (L’OSCILLATEUR HARMONIQUE).

~ 1
Le symbole principal est
1 5 0
E(X + &%)
et les conditions de quantification s’écrivent pour la variété H = F :
1
27E = 2mh(n + 5) :
Elles donnent le spectre exact:
1
E,=nh =).
(n+ 2)

Cela n’est pas surprenant, car le changement x = ~/hx, transforme H,
éen ]’ZHl
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cellule de Planck
d’aire 2wh

FIGURE 7

L’espace de phase des séries de Fourier
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FIGURE 8

L’espace des phases de 1’oscillateur harmonique
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