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UNE INTRODUCTION A LA MECANIQUE SEMI-CLASSIQUE 3]

2(n — 1) des trajectoires de Hy contenues dans la couche d’énergie Eo et
la munir de ’hamiltonien moyenné K = Tio f7 Hidt décrivant une dynamique
sur les trajectoires de Hgy. Cette dynamique décrit bien le comportement des
trajectoires de H. dans un intervalle de temps de I’ordre de 1.

4.2 LA PHASE STATIONNAIRE

Voir [36].

Dans le cas qui nous préoccupe dans la suite (linéaire), ce découplage
est une conséquence de la phase stationnaire: si on consideére une intégrale
oscillante du type:

I(h) :/ eis(x)/ha(x)ldxl,

ol S:R" — R est C* et a € Cg°(R",C), le comportement asymptotique
de I(h) quand A tend vers O est controlé par les points critiques de S situés
dans le support de a. Lorsque ceux-ci sont non dégénérés, on a une formule
explicite pour le développement asymptotique. Les faits remarquables sont les
suivants : le comportement est en /#*/?, il y a une phase liée 4 I’indice de la
hessienne de S aux points critiques.

Plus précisément, si S n’a qu'un point critique supposé non dégénéré x
dans le support de a de signature o, on a:

I(h) ~ (271-]/1)”/2eiS(x())/heiO'ﬂ'/él» a(xo) ‘
| |det(S" (xo))[!/2

Le coefficient principal (amplitude) admet une interprétation géométrique
comme densité relative de 2 mesures en xy: la mesure a(x)dx et la mesure
associ€e canoniquement a S (comme en riemannien). Cette remarque est
Porigine de la géométrisation du calcul des intégrales oscillantes.

Donnons 3 applications semi-classiques simples de la phase stationnaire :

EXEMPLE 4.1 (FOURIER ET LEGENDRE).

Soit §: U — R une fonction C*>° définie sur un ouvert U C R" et
supposons que x — S'(x) est un difféomorphisme C™ de U sur un ouvert

V du dual de R". Soit alors §(§): V — R la transformée de Legendre de S
caractérisée par

{0, S'0)) [ x € U ={5'€),6) | £ € VY,

normalisée par §(§0) + S(x0) = xp€o pour un point &, = S'(xp).
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FIGURE 4

Transformation de Legendre

Soit a € C°(U) et

TFa(€) = / e /M (x) x|

ou |dyx| est une mesure de Haar sur R" normalisée pour que Fj, soit unitaire
de L*(R",|dyx|) sur L*(R",|dx€]).
Alors
Fila(x) 5"y (€) ~ AE) e PO/,

oi S est la transformée de Legendre de S.
On peut donc dire que la transformée de Legendre est la limite semi-
classique de la transformée de Fourier.

EXEMPLE 4.2 (VITESSE DE PHASE ET VITESSE DE GROUPE).
Soit a(k) e®=“®" yne onde plane monochromatique de fréquence w(k)

dans R". Sa vitesse de propagation est v = kll(zl(llg) C’est la vitesse de

déplacement des hyperplans d’égale phase
kx — w(k)t = ay ,

souvent appellée vitesse de phase.
Si on prend une superposition de telles ondes de la forme

F(x,1) = / a(k) e —®\dk| |
avec k grand, la fonction F est négligeable en dehors des point (x,t) tels

que x = w'(k)t qui se propagent & la vitesse w'(k) appellée vitesse de groupe
du paquet d’onde.
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EXEMPLE 4.3 (PRINCIPE DE HUYGENS).
Considérons une onde sphérique de la forme

a(x) ezkr
issue de l’origine. Soit maintenant ¥ une surface et considérons une super-
position d’ondes sphériques émises par les points de X de la forme

F(M) = / M) q(PY |dP| .
>

Le comportement asymptotique lorsque k est grand est négligeable sauf si M
est sur une normale a . La phase est alors donnée a une constante pres par

kd(A, M) — n(M)g ,

a condition que M ne soit pas un point focal, et ou n(M) est l’indice de
Morse de la fonction distance.

On voit donc qu’aux grandes fréquences le front d’onde (phases constantes)
est [’enveloppe des fronts sphériques issus de X, ce qui est le principe de
Huygens en optique géométrigue.

FIGURE 5
Principe de Huygens
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