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2(n — 1) des trajectoires de Ho contenues dans la couche d'énergie Eq et

la munir de l'hamiltonien moyenné K jr J^H\dt décrivant une dynamique

sur les trajectoires de Hq. Cette dynamique décrit bien le comportement des

trajectoires de He dans un intervalle de temps de l'ordre de 1.

4.2 La phase stationnaire

Voir [36].

Dans le cas qui nous préoccupe dans la suite (linéaire), ce découplage

est une conséquence de la phase stationnaire: si on considère une intégrale
oscillante du type:

1(h) elS^x^ha(x)\dx\
JR"

où S: Rn R est C°° et a G C^°(R/Z,C), le comportement asymptotique
de 1(h) quand h tend vers 0 est contrôlé par les points critiques de S situés

dans le support de a. Lorsque ceux-ci sont non dégénérés, on a une formule

explicite pour le développement asymptotique. Les faits remarquables sont les

suivants: le comportement est en h'^2, il y a une phase liée à l'indice de la
hessienne de S aux points critiques.

Plus précisément, si S n'a qu'un point critique supposé non dégénéré xo
dans le support de a de signature cr, on a:

1(h) ~ (2tt hy,/2eiS(x0)/h tan/A*»(*>)

|det(S"(*o))|1/2

Le coefficient principal (amplitude) admet une interprétation géométrique
comme densité relative de 2 mesures en x0 : la mesure a(x)dx et la mesure
associée canoniquement à S" (comme en riemannien). Cette remarque est à

l'origine de la géométrisation du calcul des intégrales oscillantes.
Donnons 3 applications semi-classiques simples de la phase stationnaire :

Exemple 4.1 (Fourier et Legendre).
Soit S: U — R une fonction C°° définie sur un ouvert U C R" et

supposons que x Sfx) est un difféomorphisme C°° de U sur un ouvert
L du dual de R". Soit alors S(fi) : V —» R la transformée de Legendre de S

caractérisée par

{(x,s'(x)) \xe u}={(5'(0,0 lîev},
normalisée par 5(£0) + S(x0) x0£o pour un point £o S'(x0).
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Figure 4

Transformation de Legendre

Soit a G Cq°(U) et

Fh<P(0J e~'xi/h(fi(x)\dhx\,

où \dhx\ est une mesure de Haar sur Rn normalisée pour que J~h soit unitaire
de L2(Rnfdhx\) sur L2(Rn,|4£|).

Alors

Th{a{x) eiS^'h)(0~ A(0 e~iS^h

où S est la transformée de Legendre de S.

On peut donc dire que la transformée de Legendre est la limite semi-

classique de la transformée de Fourier.

Exemple 4.2 (vitesse de phase et vitesse de groupe).
Soit a(k) gkkx-uiQt) une onde plane monochromatique de fréquence u{k)

dans RL Sa vitesse de propagation est v C'est la vitesse de

déplacement des hyperplans d'égale phase

kx — uj{k)t cto

souvent appellée vitesse de phase.

Si on prend une superposition de telles ondes de la forme

F(x, t)J a{k)eikx-u(-k),\dk\,

avec k grand, la fonction F est négligeable en dehors des point (x, t) tels

que x lo'{k)t qui se propagent à la vitesse co'{k) appellée vitesse de groupe
du paquet d'onde.
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Exemple 4.3 (principe de Huygens).
Considérons une onde sphérique de la forme

a(x)e'kr

issue de l'origine. Soit maintenant X une surface et considérons une

superposition d'ondes sphériques émises par les points de X de la forme

Le comportement asymptotique lorsque k est grand est négligeable sauf si M
est sur une normale à IL. La phase est alors donnée à une constante près par

à condition que M ne soit pas un point focal, et où n(M) est l'indice de

Morse de la fonction distance.

On voit donc qu'aux grandes fréquences le front d'onde (phases constantes)
est l'enveloppe des fronts sphériques issus de X, ce qui est le principe de

Huygens en optique géométrique.

kd(A, M) - n(M)f

Figure 5

Principe de Huygens
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