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30 Y. COLIN DE VERDIÈRE

4. La mécanique semi-classique

Pour cette section, voir [2], [25], [29], [32], [42], [44], [51].

4.1 Introduction

Du point de vue physique, la mécanique quantique est apparue comme
nécessaire pour remplacer la mécanique classique dans certaines situations

(atomes et molécules, physique des étoiles).

De même, l'optique géométrique doit être remplacée par une optique
ondulatoire (Maxwell).

Le point commun est l'étude d'EDP linéaires dépendant d'un petit (ou

grand) paramètre: équation de Schrödinger avec h petit, grandes valeurs

propres du laplacien riemannien, solutions' à grandes fréquences des équations
de Maxwell.

On peut aussi considérer de façon plus générale la dégénérescence de

systèmes hamiltoniens (en dimension finie ou infinie) dépendant d'un petit
paramètre vers d'autres systèmes hamiltoniens de dimension plus petite.
La méthode de moyennisation est un peu le prototype de ces limites : les

oscillations rapides du système (penser à un gyroscope) donnent lieu à un

découplage entre une dynamique rapide et une dynamique lente qui est à

nouveau hamiltonienne sur un espace des phases réduit.

Figure 3

Méthode de moyennisation

Si on considère un hamiltonien

H£ — —Ho -(- H\
£

sur une variété symplectique de dimension 2n et qu'on suppose que les

trajectoires de Ho contenues dans la couche d'énergie Eq sont périodiques
de période Tq, on peut introduire la variété symplectique ZEq de dimension
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2(n — 1) des trajectoires de Ho contenues dans la couche d'énergie Eq et

la munir de l'hamiltonien moyenné K jr J^H\dt décrivant une dynamique

sur les trajectoires de Hq. Cette dynamique décrit bien le comportement des

trajectoires de He dans un intervalle de temps de l'ordre de 1.

4.2 La phase stationnaire

Voir [36].

Dans le cas qui nous préoccupe dans la suite (linéaire), ce découplage

est une conséquence de la phase stationnaire: si on considère une intégrale
oscillante du type:

1(h) elS^x^ha(x)\dx\
JR"

où S: Rn R est C°° et a G C^°(R/Z,C), le comportement asymptotique
de 1(h) quand h tend vers 0 est contrôlé par les points critiques de S situés

dans le support de a. Lorsque ceux-ci sont non dégénérés, on a une formule

explicite pour le développement asymptotique. Les faits remarquables sont les

suivants: le comportement est en h'^2, il y a une phase liée à l'indice de la
hessienne de S aux points critiques.

Plus précisément, si S n'a qu'un point critique supposé non dégénéré xo
dans le support de a de signature cr, on a:

1(h) ~ (2tt hy,/2eiS(x0)/h tan/A*»(*>)

|det(S"(*o))|1/2

Le coefficient principal (amplitude) admet une interprétation géométrique
comme densité relative de 2 mesures en x0 : la mesure a(x)dx et la mesure
associée canoniquement à S" (comme en riemannien). Cette remarque est à

l'origine de la géométrisation du calcul des intégrales oscillantes.
Donnons 3 applications semi-classiques simples de la phase stationnaire :

Exemple 4.1 (Fourier et Legendre).
Soit S: U — R une fonction C°° définie sur un ouvert U C R" et

supposons que x Sfx) est un difféomorphisme C°° de U sur un ouvert
L du dual de R". Soit alors S(fi) : V —» R la transformée de Legendre de S

caractérisée par

{(x,s'(x)) \xe u}={(5'(0,0 lîev},
normalisée par 5(£0) + S(x0) x0£o pour un point £o S'(x0).
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