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30 Y. COLIN DE VERDIERE
4. LA MECANIQUE SEMI-CLASSIQUE
Pour cette section, voir [2], [25], [29], [32], [42], [44], [51].

4.1 INTRODUCTION

Du point de vue physique, la mécanique quantique est apparue comme
nécessaire pour remplacer la mécanique classique dans certaines situations
(atomes et molécules, physique des étoiles).

De méme, l'optique géométrique doit €tre remplacée par une optique
ondulatoire (Maxwell).

Le point commun est I’étude d’EDP linéaires dépendant d’un petit (ou
grand) parametre: équation de Schrodinger avec h petit, grandes valeurs
propres du laplacien riemannien, solutions a grandes fréquences des équations
de Maxwell.

On peut aussi considérer de facon plus générale la dégénérescence de
systemes hamiltoniens (en dimension finie ou infinie) dépendant d’un petit
parametre vers d’autres systemes hamiltoniens de dimension plus petite.
La méthode de moyennisation est un peu le prototype de ces limites: les
oscillations rapides du systeme (penser a un gyroscope) donnent lieu a un
découplage entre une dynamique rapide et une dynamique lente qui est a
nouveau hamiltonienne sur un espace des phases réduit.

FIGURE 3

M¢éthode de moyennisation

Si on considére un hamiltonien

1
H. = —Hy+ Hi,

sur une variété symplectique de dimension 2n et qu’on suppose que les
trajectoires de Hp contenues dans la couche d’énergie E; sont périodiques
de période Ty, on peut introduire la variété symplectique Zg, de dimension




UNE INTRODUCTION A LA MECANIQUE SEMI-CLASSIQUE 3]

2(n — 1) des trajectoires de Hy contenues dans la couche d’énergie Eo et
la munir de ’hamiltonien moyenné K = Tio f7 Hidt décrivant une dynamique
sur les trajectoires de Hgy. Cette dynamique décrit bien le comportement des
trajectoires de H. dans un intervalle de temps de I’ordre de 1.

4.2 LA PHASE STATIONNAIRE

Voir [36].

Dans le cas qui nous préoccupe dans la suite (linéaire), ce découplage
est une conséquence de la phase stationnaire: si on consideére une intégrale
oscillante du type:

I(h) :/ eis(x)/ha(x)ldxl,

ol S:R" — R est C* et a € Cg°(R",C), le comportement asymptotique
de I(h) quand A tend vers O est controlé par les points critiques de S situés
dans le support de a. Lorsque ceux-ci sont non dégénérés, on a une formule
explicite pour le développement asymptotique. Les faits remarquables sont les
suivants : le comportement est en /#*/?, il y a une phase liée 4 I’indice de la
hessienne de S aux points critiques.

Plus précisément, si S n’a qu'un point critique supposé non dégénéré x
dans le support de a de signature o, on a:

I(h) ~ (271-]/1)”/2eiS(x())/heiO'ﬂ'/él» a(xo) ‘
| |det(S" (xo))[!/2

Le coefficient principal (amplitude) admet une interprétation géométrique
comme densité relative de 2 mesures en xy: la mesure a(x)dx et la mesure
associ€e canoniquement a S (comme en riemannien). Cette remarque est
Porigine de la géométrisation du calcul des intégrales oscillantes.

Donnons 3 applications semi-classiques simples de la phase stationnaire :

EXEMPLE 4.1 (FOURIER ET LEGENDRE).

Soit §: U — R une fonction C*>° définie sur un ouvert U C R" et
supposons que x — S'(x) est un difféomorphisme C™ de U sur un ouvert

V du dual de R". Soit alors §(§): V — R la transformée de Legendre de S
caractérisée par

{0, S'0)) [ x € U ={5'€),6) | £ € VY,

normalisée par §(§0) + S(x0) = xp€o pour un point &, = S'(xp).
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