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4. La mécanique semi-classique

Pour cette section, voir [2], [25], [29], [32], [42], [44], [51].

4.1 Introduction

Du point de vue physique, la mécanique quantique est apparue comme
nécessaire pour remplacer la mécanique classique dans certaines situations

(atomes et molécules, physique des étoiles).

De même, l'optique géométrique doit être remplacée par une optique
ondulatoire (Maxwell).

Le point commun est l'étude d'EDP linéaires dépendant d'un petit (ou

grand) paramètre: équation de Schrödinger avec h petit, grandes valeurs

propres du laplacien riemannien, solutions' à grandes fréquences des équations
de Maxwell.

On peut aussi considérer de façon plus générale la dégénérescence de

systèmes hamiltoniens (en dimension finie ou infinie) dépendant d'un petit
paramètre vers d'autres systèmes hamiltoniens de dimension plus petite.
La méthode de moyennisation est un peu le prototype de ces limites : les

oscillations rapides du système (penser à un gyroscope) donnent lieu à un

découplage entre une dynamique rapide et une dynamique lente qui est à

nouveau hamiltonienne sur un espace des phases réduit.

Figure 3

Méthode de moyennisation

Si on considère un hamiltonien

H£ — —Ho -(- H\
£

sur une variété symplectique de dimension 2n et qu'on suppose que les

trajectoires de Ho contenues dans la couche d'énergie Eq sont périodiques
de période Tq, on peut introduire la variété symplectique ZEq de dimension
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2(n — 1) des trajectoires de Ho contenues dans la couche d'énergie Eq et

la munir de l'hamiltonien moyenné K jr J^H\dt décrivant une dynamique

sur les trajectoires de Hq. Cette dynamique décrit bien le comportement des

trajectoires de He dans un intervalle de temps de l'ordre de 1.

4.2 La phase stationnaire

Voir [36].

Dans le cas qui nous préoccupe dans la suite (linéaire), ce découplage

est une conséquence de la phase stationnaire: si on considère une intégrale
oscillante du type:

1(h) elS^x^ha(x)\dx\
JR"

où S: Rn R est C°° et a G C^°(R/Z,C), le comportement asymptotique
de 1(h) quand h tend vers 0 est contrôlé par les points critiques de S situés

dans le support de a. Lorsque ceux-ci sont non dégénérés, on a une formule

explicite pour le développement asymptotique. Les faits remarquables sont les

suivants: le comportement est en h'^2, il y a une phase liée à l'indice de la
hessienne de S aux points critiques.

Plus précisément, si S n'a qu'un point critique supposé non dégénéré xo
dans le support de a de signature cr, on a:

1(h) ~ (2tt hy,/2eiS(x0)/h tan/A*»(*>)

|det(S"(*o))|1/2

Le coefficient principal (amplitude) admet une interprétation géométrique
comme densité relative de 2 mesures en x0 : la mesure a(x)dx et la mesure
associée canoniquement à S" (comme en riemannien). Cette remarque est à

l'origine de la géométrisation du calcul des intégrales oscillantes.
Donnons 3 applications semi-classiques simples de la phase stationnaire :

Exemple 4.1 (Fourier et Legendre).
Soit S: U — R une fonction C°° définie sur un ouvert U C R" et

supposons que x Sfx) est un difféomorphisme C°° de U sur un ouvert
L du dual de R". Soit alors S(fi) : V —» R la transformée de Legendre de S

caractérisée par

{(x,s'(x)) \xe u}={(5'(0,0 lîev},
normalisée par 5(£0) + S(x0) x0£o pour un point £o S'(x0).
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Figure 4

Transformation de Legendre

Soit a G Cq°(U) et

Fh<P(0J e~'xi/h(fi(x)\dhx\,

où \dhx\ est une mesure de Haar sur Rn normalisée pour que J~h soit unitaire
de L2(Rnfdhx\) sur L2(Rn,|4£|).

Alors

Th{a{x) eiS^'h)(0~ A(0 e~iS^h

où S est la transformée de Legendre de S.

On peut donc dire que la transformée de Legendre est la limite semi-

classique de la transformée de Fourier.

Exemple 4.2 (vitesse de phase et vitesse de groupe).
Soit a(k) gkkx-uiQt) une onde plane monochromatique de fréquence u{k)

dans RL Sa vitesse de propagation est v C'est la vitesse de

déplacement des hyperplans d'égale phase

kx — uj{k)t cto

souvent appellée vitesse de phase.

Si on prend une superposition de telles ondes de la forme

F(x, t)J a{k)eikx-u(-k),\dk\,

avec k grand, la fonction F est négligeable en dehors des point (x, t) tels

que x lo'{k)t qui se propagent à la vitesse co'{k) appellée vitesse de groupe
du paquet d'onde.
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Exemple 4.3 (principe de Huygens).
Considérons une onde sphérique de la forme

a(x)e'kr

issue de l'origine. Soit maintenant X une surface et considérons une

superposition d'ondes sphériques émises par les points de X de la forme

Le comportement asymptotique lorsque k est grand est négligeable sauf si M
est sur une normale à IL. La phase est alors donnée à une constante près par

à condition que M ne soit pas un point focal, et où n(M) est l'indice de

Morse de la fonction distance.

On voit donc qu'aux grandes fréquences le front d'onde (phases constantes)
est l'enveloppe des fronts sphériques issus de X, ce qui est le principe de

Huygens en optique géométrique.

kd(A, M) - n(M)f

Figure 5

Principe de Huygens



34 Y. COLIN DE VERDIÈRE

4.3 EDP LINÉAIRES AVEC UN PETIT PARAMÈTRE

En général, on étudiera une équation du type :

P(/z,X5~) a aa(x,h)(^dx)a
\&\<N

où les aa(x,h) sont de la forme:

aa(x,h) ^2
j>o

On définit alors

Po(x,o Y,<oC,
qui est appellé symbole principal de P. On supposera dans ce qui suit que
Po ne prend que des valeurs réelles.

Le but est de décrire les (des) solutions de

Phuh 0(h°°).

Exemple 4.4.

P=~~A+V~E, P0

(valeurs propres de Schrödinger).

h du h2
Au + Vu, P0 r-H(x, O,

i dt 2

(Schrödinger dépendant du temps).

A~2a3— 1, Po" g*(x,0 —1,

(grandes valeurs propres du laplacien).

Les solutions BKW

On considère l'action de P sur une fonction oscillante et on développe en

puissances de h :

P{a{x)eiS(x)/h) eiS(x)/h(P0Qc, S'(x))a(x)+ - + P,(x. S'(x))a(x)) 2))

où Af ^2dç.Po(x,S'(x))dXi et P](x. 0, le symbole sous-principal de P, est

une fonction sur T*X.
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Résoudre P(aelS!h) 0(h2) équivaut donc à résoudre l'équation eiconale

Pq(x,S'(x)) 0, puis une équation différentielle le long des trajectoires de

A. Ces deux opérations gardent un sens pour les solutions généralisées, en

particulier, A est la projection sur X de XpQ et donc on peut lire les équations

de transport sur la variété lagrangienne.
Dans le cas de Schrödinger, l'équation de transport s'écrit:

Xa -f -ASa 0.
2

Elle s'interprète géométriquement comme l'invariance par le flot hamiltonien de

la demi-densité a(x)\dx\1/2. Le carré a(x)2\dx\ s'interprète bien en mécanique

quantique comme une mesure: la probabilité de présence de la particule.
Pour mettre tout cela en place, on associe, à la représentation de L à partir

d'une famille de fonctions, des superpositions de fonctions oscillantes

fix) Jei,fi(x'e)/ha0)dd.

Exemple 4.5 (la fonction de Airy). On définit

Aih(x) (2tt/z) ^ f e^~^/hd£ h~l^eAi{xh~2^).
JR

Cette fonction est associée à la variété lagrangienne

qui admet une caustique en (0,0).
La fonction de Airy décrit en fait le comportement universel des intégrales

oscillantes associées aux singularités plis.

L
Figure 6

La fonction de Airy
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Le résultat net est la possibilité d'associer à toute variété lagrangienne L
vérifiant (Po)|l 0 des solutions locales de Pu — 0(h2) et même 0(h°°) si

on réfléchit un peu.
Ces solutions ne se globalisent pas toujours: ce sont les conditions de

quantification.
Dans les cas les plus simples, par exemple dans les exemples 4.6 et 4.7, il

s'agit d'une condition portant uniquement sur L : la classe de cohomologie de

de Rham de la forme de Liouville a £dx satisfait des conditions d'intégralité
du type

[a] G 27rh(Zn + /i),
où p G \fLn est Y indice de Maslov.

En effet, une fois l'existence d'une densité invariante assurée, il reste le

problème des phases qui sont données localement par S dont la différentielle
est la restriction à L de a (on retrouve la définition des fronts d'ondes comme
feuilles de phases constantes). La contribution des caustiques est donnée par
l'indice de Maslov qui a son origine technique dans la phase stationnaire..

Exemple 4.6 (les séries de Fourier). On considère l'opérateur hdx

sur R/27tZ. Son symbole principal est £ et la condition de quantification sur
la variété £ a est

2ixa - 2irhn

soit a — hn. On retrouve comme spectre les hn, n G Z et les séries de Fourier

Exemple 4.7 (l'oscillateur harmonique).

H= ^(-d2x+V).

Le symbole principal est

et les conditions de quantification s'écrivent pour la variété H E :

2itE 2irh{n 4- -).
Elles donnent le spectre exact:

En h(n + -).
Cela n'est pas surprenant, car le changement x — \fhx \ transforme Hh

en hH\.
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Figure 8

L'espace des phases de l'oscillateur harmonique
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4.4 Le cas de Schrödinger et l'intégrale de Feynman

Voir [27], [13].
Dans le cas de Schrödinger dépendant du temps, on obtient une

représentation à la Feynman:

p(t,x,y)= f
Bien sûr, cette intégrale n'a pas de statut mathématique bien solide,

contrairement à la mesure de Wiener. On doit comprendre dj comme une

mesure de Lebesgue.

5. Le spectre semi-classique

5.1 La formule de Weyl

Voir [8], [32].
On considère le spectre de l'opérateur de Schrödinger dans Kn

h2

H=--A + V-E,

où on suppose V C°° et liminf^oo V > 0 Alors le spectre négatif de H
est discret; on l'écrit:

Ex{h)<E2(h) <

Si E < 0, on considère le comportement asymptotique semi-classique de

Nh{E) #{j | E}.

Il se trouve que F asymptotique de Nh(E) est purement classique

Nh(E)~ (^Ly vol({P0(x, 0 <

ce qui signifie que chaque état propre occupe une région de volume (2irh)n^2

de l'espace des phases. C'est une des versions de la correspondance entre

volume et dimension. Cela permet parfois de déterminer le H effectif d'un

problème de type semi-classique.

De nombreux auteurs se sont préoccupés d'obtenir des estimations du reste

du type
Nh(E) Ch~n( 1 + 0(ha))
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