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30 Y. COLIN DE VERDIERE
4. LA MECANIQUE SEMI-CLASSIQUE
Pour cette section, voir [2], [25], [29], [32], [42], [44], [51].

4.1 INTRODUCTION

Du point de vue physique, la mécanique quantique est apparue comme
nécessaire pour remplacer la mécanique classique dans certaines situations
(atomes et molécules, physique des étoiles).

De méme, l'optique géométrique doit €tre remplacée par une optique
ondulatoire (Maxwell).

Le point commun est I’étude d’EDP linéaires dépendant d’un petit (ou
grand) parametre: équation de Schrodinger avec h petit, grandes valeurs
propres du laplacien riemannien, solutions a grandes fréquences des équations
de Maxwell.

On peut aussi considérer de facon plus générale la dégénérescence de
systemes hamiltoniens (en dimension finie ou infinie) dépendant d’un petit
parametre vers d’autres systemes hamiltoniens de dimension plus petite.
La méthode de moyennisation est un peu le prototype de ces limites: les
oscillations rapides du systeme (penser a un gyroscope) donnent lieu a un
découplage entre une dynamique rapide et une dynamique lente qui est a
nouveau hamiltonienne sur un espace des phases réduit.

FIGURE 3

M¢éthode de moyennisation

Si on considére un hamiltonien

1
H. = —Hy+ Hi,

sur une variété symplectique de dimension 2n et qu’on suppose que les
trajectoires de Hp contenues dans la couche d’énergie E; sont périodiques
de période Ty, on peut introduire la variété symplectique Zg, de dimension
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2(n — 1) des trajectoires de Hy contenues dans la couche d’énergie Eo et
la munir de ’hamiltonien moyenné K = Tio f7 Hidt décrivant une dynamique
sur les trajectoires de Hgy. Cette dynamique décrit bien le comportement des
trajectoires de H. dans un intervalle de temps de I’ordre de 1.

4.2 LA PHASE STATIONNAIRE

Voir [36].

Dans le cas qui nous préoccupe dans la suite (linéaire), ce découplage
est une conséquence de la phase stationnaire: si on consideére une intégrale
oscillante du type:

I(h) :/ eis(x)/ha(x)ldxl,

ol S:R" — R est C* et a € Cg°(R",C), le comportement asymptotique
de I(h) quand A tend vers O est controlé par les points critiques de S situés
dans le support de a. Lorsque ceux-ci sont non dégénérés, on a une formule
explicite pour le développement asymptotique. Les faits remarquables sont les
suivants : le comportement est en /#*/?, il y a une phase liée 4 I’indice de la
hessienne de S aux points critiques.

Plus précisément, si S n’a qu'un point critique supposé non dégénéré x
dans le support de a de signature o, on a:

I(h) ~ (271-]/1)”/2eiS(x())/heiO'ﬂ'/él» a(xo) ‘
| |det(S" (xo))[!/2

Le coefficient principal (amplitude) admet une interprétation géométrique
comme densité relative de 2 mesures en xy: la mesure a(x)dx et la mesure
associ€e canoniquement a S (comme en riemannien). Cette remarque est
Porigine de la géométrisation du calcul des intégrales oscillantes.

Donnons 3 applications semi-classiques simples de la phase stationnaire :

EXEMPLE 4.1 (FOURIER ET LEGENDRE).

Soit §: U — R une fonction C*>° définie sur un ouvert U C R" et
supposons que x — S'(x) est un difféomorphisme C™ de U sur un ouvert

V du dual de R". Soit alors §(§): V — R la transformée de Legendre de S
caractérisée par

{0, S'0)) [ x € U ={5'€),6) | £ € VY,

normalisée par §(§0) + S(x0) = xp€o pour un point &, = S'(xp).
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FIGURE 4

Transformation de Legendre

Soit a € C°(U) et

TFa(€) = / e /M (x) x|

ou |dyx| est une mesure de Haar sur R" normalisée pour que Fj, soit unitaire
de L*(R",|dyx|) sur L*(R",|dx€]).
Alors
Fila(x) 5"y (€) ~ AE) e PO/,

oi S est la transformée de Legendre de S.
On peut donc dire que la transformée de Legendre est la limite semi-
classique de la transformée de Fourier.

EXEMPLE 4.2 (VITESSE DE PHASE ET VITESSE DE GROUPE).
Soit a(k) e®=“®" yne onde plane monochromatique de fréquence w(k)

dans R". Sa vitesse de propagation est v = kll(zl(llg) C’est la vitesse de

déplacement des hyperplans d’égale phase
kx — w(k)t = ay ,

souvent appellée vitesse de phase.
Si on prend une superposition de telles ondes de la forme

F(x,1) = / a(k) e —®\dk| |
avec k grand, la fonction F est négligeable en dehors des point (x,t) tels

que x = w'(k)t qui se propagent & la vitesse w'(k) appellée vitesse de groupe
du paquet d’onde.
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EXEMPLE 4.3 (PRINCIPE DE HUYGENS).
Considérons une onde sphérique de la forme

a(x) ezkr
issue de l’origine. Soit maintenant ¥ une surface et considérons une super-
position d’ondes sphériques émises par les points de X de la forme

F(M) = / M) q(PY |dP| .
>

Le comportement asymptotique lorsque k est grand est négligeable sauf si M
est sur une normale a . La phase est alors donnée a une constante pres par

kd(A, M) — n(M)g ,

a condition que M ne soit pas un point focal, et ou n(M) est l’indice de
Morse de la fonction distance.

On voit donc qu’aux grandes fréquences le front d’onde (phases constantes)
est [’enveloppe des fronts sphériques issus de X, ce qui est le principe de
Huygens en optique géométrigue.

FIGURE 5
Principe de Huygens
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43 EDP LINEAIRES AVEC UN PETIT PARAMETRE

En général, on étudiera une équation du type:

h o h. o
Plhx, =)= ) | aali,h) (5007,

|| <N
ou les a,(x,h) sont de la forme:
aa(e,h) = b j@H .
j=0
On définit alors

Po(x, ) = > b 0",

qui est appellé symbole principal de P. On supposera dans ce qui suit que
Py ne prend que des valeurs réelles.
Le but est de décrire les (des) solutions de

Phuh = O(hoo)

EXEMPLE 4.4.

2

1
P=—ZA+V—E Py=z]¢|’+ V() - E,

(valeurs propres de Schrodinger).

h du h?
72{ __——Z—Au—f—Vl/t, Po——T_H(xaf))

(Schrodinger dépendant du temps).
ATy =1, Po=g"(x, &) — 1,

(grandes valeurs propres du laplacien).

LES SOLUTIONS BKW

On considere ’action de P sur une fonction oscillante et on développe en
puissances de & :

P(a(x)eS@/my = SO/ (Po(x, S (x))a(x) + ?(Afam + Py (x, S’ (x)a(x)) +O(h*))

ot X = 0gPolx,S' ()0, et Pi(x,&), le symbole sous-principal de P, est
une fonction sur 7*X.




UNE INTRODUCTION A LA MECANIQUE SEMI-CLASSIQUE 35

Résoudre P(ae™/") = O(h?) équivaut donc a résoudre I’équation eiconale
Po(x,S'(x)) = 0, puis une équation différentielle le long des trajectoires de
X . Ces deux opérations gardent un sens pour les solutions généralisées, en
particulier, X est la projection sur X de Xp, et donc on peut lire les équations
de transport sur la variété lagrangienne.

Dans le cas de Schrodinger, 1’équation de transport s’écrit:

1
/Ya+§ASa:O.

Elle s’interprete géométriquement comme 1’invariance par le flot hamiltonien de
la demi-densité a(x)|dx|'/?. Le carré a(x)?|dx| s’interpréte bien en mécanique
quantique comme une mesure: la probabilité de présence de la particule.

Pour mettre tout cela en place, on associe, a la représentation de L a partir
d’une famille de fonctions, des superpositions de fonctions oscillantes

fx) = /eiw(“"g)/l’a(x, 0)deo .

EXEMPLE 4.5 (LA FONCTION DE AIRY). On définit

Aip(x) = (27rh)"% / ei(ﬂ‘f—%i)/hdg — h=VoAi(xh=2/3)
R

Cette fonction est associée a la variété lagrangienne
x = &2
qui admet une caustique en (0,0).

La fonction de Airy décrit en fait le comportement universel des intégrales
oscillantes associées aux singularités plis.

Ai(z)
- F\v/\\//\\/\/\vﬂ\ N

FIGURE 6

La fonction de Airy
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Le résultat net est la possibilité d’associer a toute variété lagrangienne L
vérifiant (Po)[; = 0 des solutions locales de Pu = O(h?) et méme O(h*°) si
on réfléchit un peu.

Ces solutions ne se globalisent pas toujours: ce sont les conditions de
quantification.

Dans les cas les plus simples, par exemple dans les exemples 4.6 et 4.7, il
s’agit d’une condition portant uniquement sur L : la classe de cohomologie de
de Rham de la forme de Liouville o = £dx satisfait des conditions d’intégralité
du type

la] € 272" + 1),

ol p € $Z" est Iindice de Maslov.
En effet, une fois 1’existence d’une densité invariante assurée, il reste le
probleme des phases qui sont données localement par S dont la différentielle
est la restriction a L de « (on retrouve la définition des fronts d’ondes comme
feuilles de phases constantes). La contribution des caustiques est donnée par
I’indice de Maslov qui a son origine technique dans la phase stationnaire..

EXEMPLE 4.6 (LES SERIES DE FOURIER). On considere [’opérateur N

i
sur R/2nwZ. Son symbole principal est & et la condition de quantification sur
la variété & = a est

2ma = 2mhn

soit a = hn. On retrouve comme spectre les hn, n € 7. et les séries de Fourier.

EXEMPLE 4.7 (L’OSCILLATEUR HARMONIQUE).

~ 1
Le symbole principal est
1 5 0
E(X + &%)
et les conditions de quantification s’écrivent pour la variété H = F :
1
27E = 2mh(n + 5) :
Elles donnent le spectre exact:
1
E,=nh =).
(n+ 2)

Cela n’est pas surprenant, car le changement x = ~/hx, transforme H,
éen ]’ZHl
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cellule de Planck
d’aire 2wh

FIGURE 7

L’espace de phase des séries de Fourier
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L’espace des phases de 1’oscillateur harmonique
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44 LE CAS DE SCHRODINGER ET L’ INTEGRALE DE FEYNMAN

Voir [27], [13].
Dans le cas de Schrodinger dépendant du temps, on obtient une
représentation a la Feynman:

p(t, X, y) o / ei [(]t £('7(5):'7,(5)) dS/hd/y .
Q

1,X,y

Bien sir, cette intégrale n’a pas de statut mathématique bien solide,
contrairement a la mesure de Wiener. On doit comprendre dvy comme une
mesure de Lebesgue.

5. LE SPECTRE SEMI-CLASSIQUE

5.1 LA FORMULE DE WEYL

Voir [8], [32].
On considere le spectre de I’opérateur de Schrodinger dans R”

s h?
H=-ZA+V-E,

ol on suppose V C* et liminf, ..o V > 0 . Alors le spectre négatif de H
- est discret; on 1’écrit:
Ei(h) < Ex(h) < --- .

Si E < 0, on considere le comportement asymptotique semi-classique de
Nu(E) =#{j | E(h) < E}.

Il se trouve que I’asymptotique de N,(E) est purement classique

1
N(E) ~ (%)n vol({Po(x,§) < E}),

ce qui signifie que chaque état propre occupe une région de volume (2mh)"/?
de I’espace des phases. C’est une des versions de la correspondance entre
volume et dimension. Cela permet parfois de déterminer le i effectif d’un
probleme de type semi-classique.
De nombreux auteurs se sont préoccupés d’obtenir des estimations du reste
du type
Ny(E) = Ch™"(1 + O(h®)) .
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