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28 Y. COLIN DE VERDIERE

La situation géométrique est celle d’une fibration F: E — X et d’une
fonction ¢: E — R. Si Lj est le graphe de dy contenu dans 7*E, on passe de
Ly a L par la réduction symplectique associée au fibré conormal de la fibration.

En particulier, si £: 7X — R est un lagrangien régulier et £, 1’ensemble
des applications de ~: [0,7] — X fibré sur X x X par v — (v(0),~(¢)) et
O(y) = foz L(y(s), 7 (s))ds, la variété lagrangienne associée est le graphe du
flot hamiltonien ¢, associé au lagrangien £ par la transformée de Legendre.
La fonction génératrice @ est bien sir reliée a 1’intégrale de Feynman.

3. LA MECANIQUE QUANTIQUE

Pour cette section, voir [10], [32], [39], [47], [43].

Ici 'espace des phases est un espace de Hilbert (parfois de dimension
finie); pour €tre plus précis, c’est le projectif complexe de cet espace, mais
on peut négliger ce détail. '

La dynamique est donnée au moyen d’un opérateur auto-adjoint H (avec
domaine) sur A grace a I’équation de Schrodinger :

hdu -~
“ra
dont le flot est le groupe a un parametre d’opérateurs unitaires donné par:
U(t) = e—itH/ﬁ.
La constante /A n’est pas la uniquement pour faire joli, en général H
est une énergie et donc A a les dimensions d’une action, car on ne peut

exponentier que des quantités sans dimension !!

A~

EXEMPLE 3.1. H = L*(R") et H= —E’;A—{- V. On a alors ’équation de
Schrodinger. '

EXEMPLE 3.2. H = L*(X) et H = %Ag, ou Ay est le laplacien
riemannien. On a [’équation de Schrodinger associée au flot géodésique.

EXEMPLE 3.3. Si E est le fibré anti-canonique sur P"C, on considere
’espace de Hilbert des sections holomorphes de E®Y qui s’identifie a I’espace
des polynomes homogénes de degré N sur C''.

Si H: P"C — R, on considere les opérateurs de Toeplitz I?Nc,o = IIy(Hyp),
ou Iy est la projection orthogonale des sections sur les sections holomorphes.
Voir [19].
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La ressemblance entre les exemples de ce paragraphe et du précédent n’est
pas fortuite, comme on va le voir.

I1 faut aussi remarquer que la mécanique quantique est un cas particulier
de la mécanique classique, celui ou I’hamiltonien est une forme hermitienne
sur un espace de Hilbert. De ce point de vue, il n’est pas trés excitant: la
dynamique est quasi-périodique, les fréquences fondamentales étant li€es de
fagon simple au spectre de H.

Les correspondances entre espace des phases classiques et quantiques
(fleches entre 2 catégories) peuvent étre prolongées de facon heuristique, par
exemple correspondance entre volume et dimension, entre variétés lagrangi-
ennes et vecteurs, entre produits et produits tensoriels, entre changement de
signe de w et passage au dual.

Pour €tre plus pédant, on pourrait parler de la catégorie symplectigue dont
les objets sont les variétés symplectiques et les fleches de Z a4 Z’ les sous-
vari€tés lagrangiennes de (Z x Z',w’ — w) et de la catégorie hilbertienne dont
les objets sont les espaces de Hilbert et les fleches les opérateurs unitaires.

On obtient ainsi le tableau de correspondance suivant qu’il est intéressant
d’essayer de prolonger !!

CLASSIQUE QUANTIQUE
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