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The “if”” direction did not need @ to be irreducible. It can also be removed
as a hypothesis in the “only if” direction by weakening the conclusion to @
dividing a power of O.

Theorem 3 allowed Frobenius to establish a conjecture of Dedekind [10,
p.422], which said that the linear factors of ©, monic in X,, are related
to the characters of the abelian group G/[G,G]. More precisely, Frobenius
showed the linear factors of ®, monic in X,, are exactly the polynomials
> g X(@Xg, where x: G — C* is a character, and each such linear factor
arises exactly once in the factorization of ©. (Since we already showed such
polynomials are factors, only the “if” direction of Theorem 3 is needed and
therefore Lemma 1 is not required for this.) The reader is referred to the
paper of Frobenius [22, Sect.2] or Dickson [11, Sect.6] for details of this
argument.

It is of interest to see what is mentioned about the group determinant
in Thomas Muir’s The Theory of Determinants in the Historical Order of
Development, which aimed to describe all developments in the subject up
until 1900. In the preface to the final volume, Muir expresses the hope
that “little matter of any serious importance has been passed over that was
needed for this History.” There are many references to the circulant, one to
Dedekind’s calculation of ©(S3), but there is no mention of any work on the
group determinant by Frobenius. However, his List of Writings in the 1907
Quart. J. Pure Appl. Math. shows he was aware of such papers.

5. FACTORING THE GROUP DETERMINANT BY REPRESENTATION THEORY

We now use representation theory to completely factor the group determi-
nant. As in the second proof of Theorem 2, let’s compute the matrix for left
multiplication in C[G] by an element ) a,g, with respect to the basis G of

C[G]. Since
(Z agg>h - Zagh_lga
g g

the matrix for left multiplication by » a,g is (@gp-1). Hence
det(agy-1) = Neggy/c (Z agg) :
g

Since C[G] decomposes into a product of matrix algebras, this norm will
decompose into a product of determinants. More specifically, let {(p,V,)} be
a full set of mutually nonisomorphic irreducible representations of G (over
the complex numbers). Then the map
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CIG1— ][ Bndc(V,),

p irred
given by
Zagg = (Z agp(g)) o
geG g€G pITe

1s an isomorphism of C-algebras. Thus

Neiai/c (Z agQ) = H NEnde(v,)/c (Z agP(Q))
g g

pirred

_ H det (Z agp(g)> deg(p) |
g

pirred
This last equation arises from the fact that in the endomorphism ring End(V)
of an m-dimensional vector space V, left multiplication by an element is a

linear map End(V) — End(V) whose determinant is equal to the m-th power
of the usual determinant of the element. Therefore

OG) = detXp- ) = [] det(ZXgp(g)>deg(p).
g

p irred
Note det(d> g Xg4p(g)) 1s a homogeneous polynomial of degree deg(p), monic
m X,.
We now show that the irreducible factors of ®(G) (which are monic in X,)

can be put in a one-to-one correspondence with the irreducible representations
of G by proving

THEOREM 4. For an irreducible complex representation p of G,
(i) the polynomial det(> " Xyp(9)) is irreducible and

(ii) p is determined by det(Zngp(g)).
We begin with a lemma originally due to Burnside [4].

LEMMA 2. If (p,V) is an irreducible representation of G, then the
C-algebra map C[G] — Endc(V) given by dec agg — dec agp(g) is
onto. That is, the transformations p(g) linearly span Endc(V).

Proof. This map is basically a projection of C[G] onto one of its simple
C[G]-submodules, so it is onto. Alternatively, for a proof that works for
representations over any algebraically closed field, even one with characteristic
dividing the size of G, see [33]. [J
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LEMMA 3. Let p: G — GL4(C) be a representation. Write

> Xgp(9) = Ly,

geG

where the L;’s are linear polynomials in the X4's. If p is irreducible then
the L;’s are linearly independent over C.

Proof. By Lemma 2, any set of d> complex numbers (z;) arises as
S agp(g) = (Lij(ay)) for some vector (az) in C". So

> eyly =0 in ClXg1=> Y cyliag) = 0 for all (ag) € C”
= ZCU’ZU = ( for all (Z,'j) - Cd2
= all Cij = 0. O]

Proof of Theorem 4. (i) By Lemma 3, choose n— deg(p)*> homogeneous
linear polynomials L; such that {L;,L;} is a basis of the homogeneous
linear polynomials in C[X,]. Then we can move between the sets {X,} and
{Lij, Ly} by a linear change of variables. This gives a C-algebra automorphism
of C[X,4], so the set {Lij, Ly} consists of algebraically independent elements
over C. In particular,

det(Z Xgp(g)> = det(L;)

geG

is the determinant of a matrix whose entries are algebraically independent.
It is a standard fact (see [36, p.96] for an elementary proof) that such a
determinant is irreducible in C[L;], so it is also irreducible if we append the
extra algebraically independent variables {L;} to the ring, so this polynomial
is irreducible in C[L;, Ly] = C[X,].

(i) We need to show that p is determined by det(}  X,p(g)). It is enough

to show the corresponding character ), is determined, and that is what we
will do.

The number x,(e) 1s the degree of the homogeneous polynomial
det(dXgp(g9)). For h # e, we will recover x,(h) as the coefficient of
x$EP~1x,  To see this, we ignore all variables besides X, and X, by setting
X4 equal to O for g # e, ~. Then our polynomial becomes det(X.I + X, p(h)).
We want to know the coefficient of XS ~!X, in this polynomial. For any
matrix A, the polynomial det(T'/ + A) in the variable T has second leading
coefficient Tr(A). Apply this to A = X;p(h), whose trace is x,(h)X,. []



378 K. CONRAD

Let’s work through the proof of Theorem 4(i) in a case we’ve already
seen, G = S3. Recall

m =), m=(123), m3 =(132), mqy =(23), 75 = (13),76 = (12).
Let p: S3 — GL(V) be the irreducible 2-dimensional representation on
V = {(21,22,23) - C3 CZ1t+ 2+ 23 = O},

given by permutation of the cooordinates. Using (1,0,—1),(0,1,—1) as an
ordered basis of V, we get the matrix realizations

1 0 -1 -1 1
[,0(771)]:<O 1>> [P(Wz)]=< | O>’ [,0(7@)]:(_(1) _1>>

1 0 —1 -1 0 1
[p(vr4)]:<_1 _1>, [p(Ws)]=< 0 1>, [/)('7r6)]:<1 0)'

Therefore

6
X1 —Xo+X4—Xs —Xo+X5—Xs5+X¢
.1 ) Xilpm)] = ( :
i—1 XZ‘“X3“X4+X6 Xl—X3—X4+X5

which tells us what the L; in Lemma 3 are, 1 < i,j < 2. Taking the
determinant of the right hand side of (5.1) gives an expression ad — bc for
the factor @3 of ©(S;) where a,b,c,d are linear polynomials with integer
coefficients (such an expression was given by Dickson in [14, Eq.2]). In the
expression of Dedekind’s for @3 which we saw earlier, a, b, ¢, and d had
coefficients involving cube roots of unity. The fact that we can get integer
coefficients is related to the 2-dimensional irreducible representation of S
being realizable in GL,(Z). In general, the irreducible factors of ©(S,) have
integer coefficients since all irreducible representations .of S, are defined over
the rational numbers.

As a basis of the linear forms in C[X;] we use the L; and matrix entries
of all > X;p/(m;) where p’ runs over irreducible representations of S; not
isomorphic to p. These are the trivial and sign representations, which yield
L1 :Xl —|—X2 +X3 +X4 +X5 +X6 and L2 :Xl +X2 +X3 ~X4 ——XS —X6,
so we can also use X; + X, + X5 and X4 + Xs + Xg. These are essentially
elements Dedekind came across when factoring ©(S3;) into linear factors in
some hypercomplex number system. Compare this means of manufacturing
w1 + m + m3 and mwy 4+ w5 + mg with Dedekind’s calculation.

As an illustration of the proof of Theorem 4(ii), the quadratic irreducible -
factor of ©(S3;) corresponds to the irreducible 2-dimensional representation
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of S5, and its coefficients of X X; for 2 <i < 6 (some of which are Zero)
coincide with the character values at ;.

The proof given for Frobenius’ theorem on the factorization of ®(G) can
be adapted to show that for any finite-dimensional complex representation p
of G, the determinant attached to p, namely

0,(G) = det( Y Xy09))

g€eG

decomposes into homogeneous irreducible factors (monic in X, ) in accordance
with the decomposition of p into irreducible representations. Frobenius’
theorem on the group determinant involves the regular representation.

In Frobenius’ initial work on the group determinant, he felt the most
remarkable (and difficult to prove) feature of the factorization was that the
degree of each irreducible factor coincides with its multiplicity as a factor.
We recognize this feature as a familiar statement about the multiplicity of
irreducible representations in the regular representation.

Since every factor (monic in X,) of the group determinant has the form
det(>” p X4p(g)) for some representation p, the “if” direction of Theorem 3 gets
a second proof from the definition of a representation and the multiplicativity
of determinants.

According to Hawkins [26, 27], Frobenius’ original approach to characters
of G (which is not the first one that appeared in print) was as follows. Let
® be an irreducible factor of ©(G) which is monic in X, and of degree d.
Define the associated character x by letting x(g) be the coefficient of X¢~!
in 0®/0X,. This is equivalent to the description we gave in the proof of
Theorem 4(i1), except that we speak of the character attached to an irreducible
representation of G while Frobenius (at first) spoke of the character attached
to an irreducible factor of the group determinant of G.

Here 1s another point of view that Frobenius had on characters. Let @
be an irreducible factor of the group determinant of G, monic in X, and of
degree d. We regard @ as a function C[G] — C by ) a,g9 — ®(a,). Let
x =) agg € C[G]. For a variable u, set

(5.2) D +ue) =u' +Cou M+ +Cy

where C; is a polynomial function of the a,’s which is homogeneous of
degree /. In particular, C; is a linear homogeneous polynomial of the ag’s.
Frobenius observed in [22, p. 1360] that its coefficients are the values of the
character x corresponding to @ : C; = >° g X(g)ag. Since (5.2) is essentially a
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characteristic polynomial, so C; is basically a trace, the connection Frobenius
eventually found between characters and traces is not surprising.

In [22], Frobenius explicitly showed how all the coefficients of an
urreducible factor of the group determinant can be expressed explicitly in
terms of its corresponding character. We will show more generally that for
any (complex) representation p of G, irreducible or not, the coefficients of
det(d_Xgp(g)) can be expressed in terms of x,. Our discussion is based on
. the matrix formula (5.3) below, which we now explain.

For N > 1 and o € Sy consisting of disjoint cycles of length Ny,...,N,,
define a trace map Tr,: My(C) — C by Tr,(A) = Tr(A") - ...  Tr(A"). For
example, Tra)w).. oA = (TrA)V, Trg,.. wA) = Tr(AY), and Tr,(ly) = d".
If 0 and 7 are conjugate in Sy, they have the same cycle structure (and vice
versa), so Tr, = Tr,. Note Tr, is typically not linear.

For our application, we set N = d. We will prove that for A € M,(C),

1
(5.3) det(4) = — > sgn(o) Trg(A).
oESy
A formula equivalent to (5.3) was used by Frobenius in [22, Sect. 3, Eq. 8].
For example, when d = 2 let A have eigenvalues A and p. The right
hand side is

%((TrA)z — Tr(A%)) = %((/\ +w)? — (A + p?) = Au = det(A).

To prove (5.3), let Ai,...,A\; be the eigenvalues of A, repeated with
multiplicity. For k£ > 1, let s = A + -+ + )k,

If o has m; 1-cycles, m, 2-cycles, and so on, then m|+2my+- - -+dmy; = d
and sgn(o) = [[((—=DF1)™. Since S kmy = d, sgn(o) = ()¢ ¢,
Also, Tr,(A) = s7"s5% - ... s;*. Therefore

d
sgn(o) Tr,(A) = (—1)? H(—l)’”ks’,?k .
k=1
If o and 7 have the same cycle structure, sgn(o) Tr,(A) = sgn(7) Tr.-(A).
For our evaluation of i
57 > sen(0) Tro(4),
oESy
we want to collect all the terms corresponding to permutations with the
same cycle structure. The permutations in S; having a cycle structure with

my l-cycles, m; 2-cycles, and so on form a conjugacy class whose size is
d\) TI¢_, k™ - my! . Thus
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o TT st
—ZSgn(U)Tra(A) >, D d'H P
a! o€Sy my,my,-- >0 ks
m;+2nmy+---=d

= (—l)d Z H ( ki?:/:: L,

my g, >0 k=1

my+2my+---=d
We want to show this equals A - ... Aq. To do this, we use generating
functions :
d
LMy (=)™ (set)™
Sy 925y v 155
i>0  my,ma,-- 20 k=1 i>0 my,my,---20 k=1
m+2my+--=i m1+2m2+ =]
d
I () =T
k mk
k=1m>0 k=1
d k d d k 4k
_ S _ At
=ewp(~) %) =en(- XX %)
k=1 j=1 k=1
d d d
-TI Xp( S /k) = [ expllog(1 — i) mod #+!
j=1 k=1 j=1
d
= H(l — \it) mod 1.
j=1
The coefficient of @ here is (—1)¢)\; - ... A4, as desired.

More generally, for N > 1 and A € My(C), the coefficient of ¥ in

N
H;Izl(l — Ajt) 18 (— 1N Tr(A\A), so by an argument similar to the one above,

N ni
T(AA) =D Y H ( k13m: - ]—Vl—' 3 sgn(0) Try (A).

my,my,--->0 k=1 o&Sy
my+2my+---=N

It is interesting to write (5.3) using the classical definition of the determinant
of the d x d matrix (a;) :

1
Z SgH(U)alg(l)QZU(Z) Cee Ado(d) = g'- Z sgn(d) Tra((alj))'

o€Sy ) oc€ESy

Although these sums are both taken over S,, the addends corresponding to
the same permutation o are typically not equal. For instance, for a diagonal
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matrix the left hand side has only one nonzero term while the right hand side
has many nonzero terms.

Let’s apply (5.3) to representation theory. It says that for a d-dimensional
representation p of G,

det(Z Xgp(g)> = % > sgn(o) Tr, (Z Xg P(g)>

g€eG o€Sy g€eG

= (—1) mhg;m kl;[l E{;kln):j (Tr((z P(Q)Xg)k>>
my+2my+---=d

which equals

d my my
VDY H;fnik!( > X gy X))

ml>m2)"'20 k=1 (gl
my+2my+---=d

So all coefficients can be expressed in terms of ), . For the connection between
the coefficients and the higher characters of p, see Johnson [30, p.301].

In particular, if p is 1-dimensional then det(ZXgp(g)) = > xp(@X,.
For 2-dimensional p,

det(SXop) = 5 (Eo@Xy) — 5 3 xplahX X,

1
=3 Z (X (DX (M) — x,p(gh)X g X},
(9,hEG?

1
=5 2 0@ = xp(g*)X;
g

+ > O@xe() — xp(gh) XXy
{g,h} unequal

To conclude this section, let’s use the point of view developed here to
factor the group determinant of Dg, the group of symmetries of the square
(also denoted by some as Dy). We index the elements of Dg as

g =1, 9 =013)24,  g3=(1234), 94 = (1432),
g5 =(013),  ge=(24), g1 =01HE4H, gz = (14)(23).
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The conjugacy classes are

e ={1}, o ={g}, cs={93, 94}, ca ={95: 96}, ¢5 = {97,938} -

The character table of Dg 1is

C1 ) 3 C4 Cs
X1 1 1 | | 1
X2 1 1 1 —1 —1
X3 1 I -1 1 -1
X4 1 1 -1 =1 1
X5 2 =2 0 0 0

Therefore O(Dg) = P O, O3 ©, D2, where

D =X+ X+ X3 +X4+ X5 +Xe + X7+ Xs,
O, =X, + X+ X3+ X4 — Xs — X — X7 — X3,
Dy =X, + X5 — X3 — X4 + X5 + X6 — X7 — X,
Oy =X +Xo — X3 — X4 — X5 — Xg + X7 + X3,

Dy = det(z X, p(g)) .

where p is the 2-dimensional irreducible representation of Dg. So

D5 = Z (5@ = xs@NX2+ Y es(@xsth) — xs(gh) XX,
{g,h} unequal
:X% + X2+ X3 X7 X2 X2 X5 X3
— 2X1 Xy — 2X3X4 4+ 2X5Xg + 2X7 X5 .

Although Qg and Dg have identical character tables, and all coefficients of an
irreducible factor of the group determinant are determined by the corresponding
character, the quadratic irreducible factors of ®©(Qg) and ©(Dyg) are different.
This illustrates that the determination of all coefficients of a factor from its
character depends on the character as a function on group elements, not only
on conjugacy classes.
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