Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de I'Enseignement Mathématique

Band: 44 (1998)

Heft: 3-4: L'ENSEIGNEMENT MATHEMATIQUE
Artikel: THE ORIGIN OF REPRESENTATION THEORY
Autor: CONRAD, Keith

DOl: https://doi.org/10.5169/seals-63909

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 19.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-63909
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

L’Enseignement Mathématique, t. 44 (1998), p. 361-392

THE ORIGIN OF REPRESENTATION THEORY

by Keith CONRAD

ABSTRACT. Representation theory was created by Frobenius about 100 years ago.
We describe the background that led to the problem which motivated Frobenius to define
characters of a finite group and show how representation theory solves the problem.
The first results about representation theory in characteristic p are also discussed.

1. INTRODUCTION

Characters of finite abelian groups have been used since Gauss in the
beginning of the 19th century, but it was only near the end of that century, in
1896, that Frobenius extended this concept to finite nonabelian groups [21].
Frobenius’ approach to group characters is not in common use today, although
some of his ideas that were overlooked for a long period have recently been
revived [30].

Here we trace the development of the problem whose solution led Frobenius
to introduce characters of finite groups, show how this problem can be
solved using classical representation theory of finite groups, and indicate
some relations between this problem and modular representations.

Other surveys on the origins of representation theory are by Curtis [7],
Hawkins [24, 25, 26, 27], Lam [32], Ledermann [35] and van der Waerden
[38]. While Curtis describes the development of modular representation theory
focusing on the work of Brauer, we examine the earlier work in characteristic

p of Dickson.




362 K. CONRAD
2. CIRCULANTS
For a positive integer n, consider an »n X n matrix where each row is

obtained from the previous one by a cyclic shift one step to the right. That
1s, we look at a matrix of the form

Xo X1 Xo ... Xy
Xn—l XO XI e Xn—2
X1 X0 X5 ... Xo

Let’s think of the X,’s as indeterminates. The determinant of this matrix
18 called a circulant of order n. It is a homogeneous polynomial of degree n
with integer coefficients. Circulants were first introduced in 1846 by Catalan

[5, p. 549].
The circulants of order 2 and 3 are
Xo X
X, x| = X0~ Xi = o+ X0(o —X0),
and
Xo X1 X
X, Xo Xi|=2Xg+X]+X;—3%XeX1 X2
X: X Xo

= Xo + X1 + X2)Xo + wX; + w?X2)(Xo + w?X) + wX>),

where w = &27/3

Spottiswoode stated without proof in [37, p.375] that over the complex
numbers, the circulant of order n factors into n homogeneous linear polyno-
mials whose coefficients are n-th roots of unity, as follows.

THEOREM 1.
Xo X; Xo ... Xuo
Xoo1 Xo X1 ... X, gl Bl ,
. . . . . - < CJka)
: . . i . j=0 k=0
X X7 X3 XO

n—1

=[]0+ X+ + VX, ),
j=0

where ( € C is a primitive n-th root of unity.
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Proof. We give two proofs. The first is essentially the first published
proof, by Cremona [6], where the idea is attributed to Brioschi.
Let f(T) = Z;(l) X, T%. We want to show the circulant of order n has

determinant
n—1

[Tr¢).
Jj=0

Consider the equation of n x n matrices

n—1

X = (32 4% ) = (.

k=0
In full, this reads
Xo X1 Xo ... X,—i 1 1 1 1
Xn—l XO X; ... Xn—2 1 C Cz o <~n—1
X X, X5 ... Xo 1 C”—l Cz(”—l) o C(n—l)2
SXe kxR

ZX/( Z Ck+1Xk o Z C(n~1)(k+1)Xk

ZXk 2 Ck—{—n—le o Z C(n—l)ik%—n—l)x/{

fa e f¢H
fO fOC o fETHe!

f O f(g"—l).c(n—l)z

The matrix (¢7) is Vandermonde with nonzero determinant (since ¢ is a
primitive n-th root of unity), so we’re done by taking determinants.

For the second proof, let 0 < r < n-—1. Add ¢~ times the i-th row
(1 <i < n—1) of the matrix (X;_;) to the zeroth (i.e., top) row. This
does not affect the value of the determinant. Now the top row has j-th entry
(0<j<n—1)equalto

> K= D (UKL= CTC.

I€ZL/nZ k€Z/nl

So the circulant is divisible by f(¢"). Since the polynomials f(¢") are
relatively prime for different r, the circulant is divisible by Hf;ol f(C"). This
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is a homogeneous polynomial of degree n, so this product equals the circulant

up to a scaling factor. Since both polynomials are monic in X, the scaling
factor is 1. [

Anticipating later extensions of Theorem 1, it is useful to regard the
subscript of X; as an element of Z/nZ. Then the circulant is det(X;_;).
Actually, Catalan, Spottiswoode, and Cremona worked with det(X;;), but these
two determinants differ only in sign: det(X;;) = (—1)*~D0=2/2det(X;_)).
Spottiswoode’s formula had a sign error, Cremona’s did not.

How does the circulant factor over a field of characteristic p ? The use
of the complex numbers is as container of appropriate roots of unity for the
factorization. So the argument above works over any algebraically closed field
of characteristic prime to n, since such a field contains a primitive x-th root
of unity. The field doesn’t have to be algebraically closed; we just need the
polynomial Y"—1 to split completely over the field into distinct linear factors.
What if we work over a field of characteristic p where p | n ? Let’s look at
an example, p =2 and n = 2. Over a field of characteristic 0,

Xo Xi
X; Xo

= Xo — X1)(Xo +X1).

Over a field of characteristic 2,

Xo Xy

— p— X X 2.
X, X Xo +X1)Xo + X1) = Xo + X1)

This factorization reflects that of Y% — 1. In characteristic 0, Y2 — 1 =
Y — 1)(Y + 1) is a product of two relatively prime polynomials. In charac-
teristic 2, Y2 — 1 = (Y + 1)? is the square of a single polynomial. This gives
the flavor of the general case in characteristic p. If p | n then the circulant of
order n factors in characteristic p the same way as it does in characteristic 0,
except we have some repeated factors appearing as they do in the factorization
of Y"—1 in characteristic p. That is, over a field F' of characteristic p where
Y" — 1 splits completely,

Xo X1 Xo ... X,
X,—1 Xo X1 ... X,—» n—1
. . ‘ ‘ = H <Z kak> )
. . ¢ ) ¢ w€eF k=0
X X, X3 ... Xo w'=1

where any n-th root of unity in F is repeated as often as its multiplicity as
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a root of Y" — 1. Writing n = p’m with m prime to p, the right hand side
of the above equation equals

—1 ,
n . p

H ( E w Xk> .

weF k=0

w"=1

As an example of this, in characteristic p
det(X;_ )i jez/pz = Ko+ X1+ -+~ X, )

The factorization of the circulant in characteristic p was needed by
Davenport in [9], where he gave a proof using resultants. As an alternate
proof, reduce the characteristic 0 formula mod p by the appropriate technical
device. One choice is to work over the ring Z[(,] and reduce modulo a prime
divisor of p. A second choice is to work over the p-adic ring Z,[(,] and
pass to the residue field. The factorization in characteristic O then passes to
characteristic p, and factors that had been distinct in characteristic 0 are now
repeated in the way Y"” — 1 factors in characteristic p.

3. THE WORK OF DEDEKIND

Parts of this section are based on [24].
Dedekind was led to an extension of the circulant by considerations in
algebraic number theory. Let K/Q be a finite Galois extension of degree n

with Galois group G = {0y, ...,0,}. The discriminant of a set of n elements
a1,...,a, of K is defined to be the square of the determinant

oi(a) oi(az) ... oi(ay)

o) o) ... o)

Un(al) Un(OQ) oo oplay)

We will be using this as motivation for the group determinant below.
Dedekind had reasons to consider the discriminant of »n elements formed
by the Q-conjugates o;(«v) of a single element «. In that case the discriminant

becomes the square of
o1(o1(@) oi(oa(@) ... o1(ox()
o2(01(@) oa(o2(@)) ... oa(ou())

on(oi(a)) on(oa(a)) ... 0_11(0;1(05))
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Let xo = o(a). Then this is the determinant of the matrix (a,.) doubly
indexed by G, where a, » = X, 1.

Dedekind’s work with det(x,,) soon convinced him that working with
det(x,,—1) would be more convenient. Perhaps one reason is that the entries
along the main diagonal of (x,,-1) are all the same, x.. For any finite group
G we form a set of variables {X,} indexed by G and define the group
matrix to be (Xg,-1). This matrix can be thought of as one where each row
is obtained from a fixed row (e.g., the top row if an ordering is put on the
index set G) by the group G acting as permutations on the subscripts of the
entries in the fixed row. The matrix introduced in Section 2 in connection
with the circulant is the transpose of the group matrix for Z/nZ. The group
determinant is defined to be

O(G) = det(X 1) .

This is a homogeneous polynomial in the X,’s of degree n = #G with
integer coefficients. Note det(X,,-1) = det(X,-1,). When G = Z/nZ, the
group determinant is the circulant of order n.

The group matrix is closely related to the group algebra, for example the
map Z[G] — M,(Z) given by > g %99 = (Xgp-1) is a ring homomorphism.
This will be useful later on.

Around 1880, Dedekind proved that when G is any finite abelian group,
O(G) factors over C into a product of linear factors with coefficients being
roots of unity. Burnside proved this too [3], using the decomposition of any
finite abelian group into a product of cyclic groups, and an argument similar to
the second proof of Theorem 1. Although Dedekind and Burnside established
basically the same factorization, Dedekind’s formulation was superior because
he had a conceptual idea of where the roots of unity were coming from, as can
be seen in the following statement of his result, which gives some insight into
the role of the roots of unity appearing in the factorization of the circulant.

THEOREM 2. Let G be a finite abelian group. Then
detp-) = [T (3 x@%,)
xEG geG

where G is the character group of G, namely the group of homomorphisms
from G to C*.

Proof. We give two proofs. The first one is based on a proof for the
circulant factorization. This argument will extend only partially to nonabelian
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groups. We motivate the approach to the nonabelian situation by giving a
second proof that is developed inside the group algebra C[G].

Our first proof will mimic the second proof of Theorem 1. Fix a character
x of G. For each nonidentity element g of G, add x(g) times the g-th row
of the group matrix (X,,-1) to the row indexed by the identity, e. The entry
in row e and column / becomes

> x(@X g1 = xh) Y x(@)Xg
g g

Here the sum includes g = e. Thus ©(G) is divisible by > x(g)X4. Such
polynomials are relatively prime for different x since different characters are
not scalar multiples. The product of all these factors is homogeneous of degree
n and monic in X,, like ©(G), so it equals O(G).

Here is a second proof. We consider two bases of C[G], G and
{3, X(g)g}xE ¢ - That the second set is a basis is a different way of saying
the characters of G are linearly independent. Left multiplication on C[G] by
any element ) a,g is a linear map. Let’s express it as a matrix with respect
to these two bases.

First we use the basis G. For 7 € G,

(Z agg)h = dag-g,

so the matrix is (ag,-1), whose determinant is det(ag,—1).
Now we use the basis ) g x(g9)g as x runs over G. We have

(Egjag 9) (}; x(Wh) =33 agx)k

k  gh=k

= (X ants )k
= (X anxte™) (X xwi).

The basis {> , X(9) g} for C[G] consists of eigenvectors for left multiplication
by > ayg, so the determinant of this left multiplication is the product of its
eigenvalues, hence

det(agi-) = [T (X x"'@as) = TT (3 xtray )

xeG 9€6 xeG 9€G

Therefore the polynomials det(Xy,-1) and er o (Z 9€G X(g)Xg> are equal
functions on all of C", so they must be the same polynomial.  []
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For a proof of Theorem 2 that mimics the matrix product proof of the
circulant factorization, see [2, p.421, Exer. 14]. A variant on the second proof
of Theorem 2 can be found in [34, pp.89-90] and [2, p.421, Exer. 12, 13].

EXAMPLE. G = Z/2Z x Z/2Z. For purposes of convenient notation,
writing X, will be cumbersome. Let’s write

X1 =X0,0, X2 =X0,1, X3 =Xq,0, Xa =Xq,1)-

Then Dedekind’s theorem says

=X+ X + X3+ X)X + X0 — X3 — X4)

X (X1 =X+ X5 — X)Xy — X2 — X3+ Xy).

What form does Theorem 2 take if we factor the group determinant of
an abelian group over an algebraically closed field F of characteristic p ? If
n = #G 1s prime to p, then G has n characters in characteristic p, i.e. there
are n homomorphisms G — F*, and the above formula of Dedekind’s still
works. In fact, the proof of Theorem 2 still works. If n = p"m where m is
prime to p, then there are m homomorphisms G — F*, and by reducing the
characteristic 0 formula into characteristic p by either of the tools mentioned
in connection with the circulant formula in characteristic p, we see that for
each character y: G — F*, the linear factor ) g X(9)Xg appears in the
factorization of ©(G) over F with multiplicity p”. For instance, if G is an
abelian p-group then the only group homomorphism G — F* is the trivial

character and 4o
o) = (> X,) .
g€eG

Around 1886, Dedekind became interested in factoring the group determi-
nant for nonabelian finite groups. His first discovery was that when the group

is nonabelian, some of the irreducible factors of the group determinant might
not be linear. Let’s see this in two examples that Dedekind worked out.

EXAMPLE [10, pp.423—424]. Let G = S3. It is easier to write the variables
as X;, 1 <i<6, rather than as X, m € S3. We enumerate the elements of
S; as Dedekind did:

m = (1), m = (123), m3 = (132), W4:(23), ms = (13), 7 = (12).
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Set X; = X,,. Then Dedekind calculated
0(S3) = & D, 3,

where

D =X, +Xo+ X3+ X4+ X5 + X,
O =X, +X+X3 — X4 — X5 — Xo,
Oy =X+ X3 +X2 X7 - X2 -X;
— X X5 — X1 X3 — X0 X3 + X4Xs + XuXe + X5 X .

He used the change of variables

u =X +X2+Xs, v =X4 + X5+ Xe,
u = X; +wXo + X5, v = X4+ wXs + wXs,
U, = X +w2X2+wX3, () :X4+w2X5 + wXg

to write the factorization of ©(S3) as
O(S3) = (u+ v)(u — v) (Ui — v1v2)” .

Obviously ®; and ®, are irreducible. What about @3 ? Since the change of
variables from the X’s to the u’s and v’s is invertible, it gives a C-algebra
automorphism of the polynomial ring over C in the X;’s. In particular, the
u’s and v’s are algebraically independent over C. In Clu,v,u;, vy, us, v2],
ujuy — vy 1s irreducible, so @5 is irreducible. For future reference, note we
proved irreducibility of @3 by finding a linear change of variables converting
@5 to the determinant of a 2 X2 matrix with algebraically independent entries.

Dedekind’s change of variables was perhaps motivated by the case of group
determinants for abelian groups, where roots of unity arise as coefficients. We
will see later (equation (5.1)) that an expression of @3 in the form ad — bc
can be found where a,b,c,d are linear polynomials in the X;’s with integer
coefficients. This is related to the fact that the irreducible 2-dimensional
complex representation of S; can be written using matrices with integer
entries.

Hamilton’s 1843 discovery of quaternions gave rise to interest in “hyper-
complex” number systems, 1.e. associative C-algebras. Dedekind decided that
since ©(S3) didn’t factor into linear factors over C, he should find an appro-
priate hypercomplex number system over which the factors become linear. It
seems plausible by looking at @3 that if it can be made into a product of linear
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factors over some hypercomplex system, there should be two homogeneous
linear factors, so [10, pp.438-441] Dedekind wrote

N s = (Y exi) (3o 61),

for some elements «; and (; in an unknown hypercomplex system. In
particular, «;(3; = 1. Dedekind normalized this hypothesized factorization
by setting oy = ; = 1 and then multiplied out the right hand side of (3.1),
keeping in mind that there may be noncommutativity among the coefficients.
He obtained a number of relations between the «’s and the (3’s, such as

aw+bh=a3+03=—-1,
s+ Bs=as+0Bs=as+ =0,
B =a3f =1,

sy = asfBs = agfs = —1.

So a4 = —fu, hence af = —aufy = 1. Similarly, o = a2 = 1. Also
ay=—1—0,50 af = —a; —apfh = —ap — 1, hence 1+ ay + a3 =0,

so a; = 1. Similarly, o = 1. Note that 7, and 73 have order 3 and the
coefficients of X, and X; satisfy o3 = o3 = 1, while 4, 7s, 76 have order 2
and the coefficients of X4, Xs, and X, satisfy of = a2 = af = 1. So writing
m; in place of «a; and defining (3; by the above additive relation with «;, it
seems we may have factored @3 into linear factors over the noncommutative
ring C[S3]. This is not quite correct. Identifying «; as m; in C[S3] leads to
some collapsing of the ring. For example, looking at the coefficient of X,X3
in (3.1) leads to

—1 =l +a3f = an(—1 —a3) + a3(—1 — ay)

:—&2—&3—012043—043052:—7T2—7T3—7T27T3—’/I'37T2:—7T2—7T3—2,

so we need 14 7 +m3 = 0. Multiplying this equation through by 74 on the
left leads to w4 + w5 + mg = 0. It is left to the reader to check that (3.1) is
true over C[S3]/Q, where Q is the subspace generated by 14 7, + 73 and
74 + 75 + e, which is a 2-sided ideal. The 4-dimensional C-algebra C[S;]/Q
is isomorphic to the 2 by 2 matrices over C.

EXAMPLE [10, pp.424-425]. Let G = Qg, the quaternion group
{+1,4i,+j, £k}. We index the elements of G as

a=1, o=-1, 3=1i, a=—1, 5=J, g6 =—J, 917=k, gs = —k.
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Let X; =X,, 1 <i<8. Dedekind computed
O(Qs) = P DL P3P, D5,
where

D =X, +Xo +X3+Xg+Xs + X6 + X7+ Xs,
D =X+ X+ X3+ Xa — X5 — Xo — X7 — Xg,
Oy =X, + Xy — X3 — X4 + X5+ X6 — X7 — Xg,
Q=X +Xo — X3 — X4 — X5 — X¢ + X7+ Xg,
D5 = > X? —2X1X; — 2X3Xy4 — 2X5Xe — 2X7X3
= (X1 — X2)* + (X3 — Xa)* + (X5 — X6)* + (X7 — Xg)° .

Only ®s is not linear, and it is irreducible over C. There is an obvious
“hypercomplex” number system over which ®s becomes a product of linear
factors, namely the quaternions H (although C is not in its center).

In general, Dedekind wanted to find a hypercomplex number system over
which ©O(G) factors linearly and understand how the structure of G is reflected
in such a hypercomplex system. Ten years later, in 1896, Dedekind classified
the finite groups all of whose subgroups are normal (Hamiltonian groups), and
in a letter to Frobenius where he wrote about this result [10, pp.420-421],
Dedekind mentioned the group determinant, explained how it factors in the
abelian case, and suggested Frobenius think about the nonabelian case. It is
the question of factoring the group determinant of an arbitrary finite group
that gave rise to representation theory by Frobenius, though other algebraic
developments in the late 19th century were also heading in this direction [25].

4. THE WORK OF FROBENIUS

Frobenius felt the interesting problem was not finding a hypercomplex
number system where O(G) becomes a product of linear factors, but finding
the mrreducible factors of ®(G) over the complex numbers, whether or not
they are linear. His solution to this problem appeared in [22], and depended
on the papers [20] and [21], where he established the needed facts about
commuting matrices and characters of finite groups.

Frobenius begins [21] by recalling previous uses of characters in number
theory. Here is how the paper starts :
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«When he proved that every linear function of one variable represents
infinitely many prime numbers if its coefficients are coprime integers, Dirichlet
used for the first time certain systems of roots of unity, which also appear
when one treats the closely related problem of the number of ideal classes in
cyclotomic fields [...]»

Establishing Dirichlet’s theorem on primes in the arithmetic progression
m+nj (j € N) and the class number formula for the cyclotomic field Q((,)
involve not only the characters of (Z/nZ)*, but also something Frobenius
did not explicitly refer to: L-functions of these characters. This was about
thirty years before Artin [1] introduced L-functions of the characters Frobenius
introduced in [21].

Towards the end of the introduction to [21] is a prescient comment :

«In April of this year, Dedekind gave me an exercise ... [whose] solution,
which I hope to be able to present soon, led me to a generalization of the
notion of a character to arbitrary finite groups. I want to develop this notion

here since I believe that by its introduction, group theory should undergo a
major advancement and enrichment. »

We begin our analysis of the factorization of ®(G) by writing down one
factor that is always present and indicating how to normalize the factorization.
Since each row of the matrix (X,,-1) contains the sequence {X,} in some
order, adding all the columns to a fixed column shows ©O(G) is divisible by
D _gec Xg- This observation, for cyclic G, was made by Catalan when he first
introduced circulants.

Since ©(G) is homogeneous of degree n = #G, its irreducible factors are
also homogeneous. If we set the variables X, for g # e equal to 0, then
O(G) becomes the polynomial X! . Therefore we fix a definite factorization of
O(G) into irreducibles by requiring the irreducible factors to be monic in X,.
It will turn out that this is Frobenius’ factorization of the group determinant
of G.

What are irreducible factors of ®(G) besides ZXQ ? For each character
x: G — C* we have a factor ) " Xx(g)X,, proven just as in the proof of

Theorem 2. This accounts for #G/[G,G] factors, which leaves more factors
to determine for nonabelian G.

In only a few months Frobenius solved this problem. Letting s denote
the number of conjugacy classes of G, Frobenius proved ©O(G) has s
(homogeneous) irreducible factors that are monic in X,, each one having
degree equal to its multiplicity in the factorization of ©(G). That is,

N

e@) =[]/,

i=1
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where ®; is homogeneous irreducible and f; is the degree of ®;. He also
[22, Sect. 12] proved f; | n. (Taking degrees of both sides, we get n =}, 12,
which should look familiar from representation theory. We’ll see later that the
fi’s are the degrees of the irreducible complex representations of G.) His study
of this problem led him to introduce for the first time the notion of a character
of a finite nonabelian group, which he defined as a conjugacy class function
related to the number of solutions of the equation ab = ¢ where a,b,c run
over elements in three conjugacy classes. For a description of this method,
see [8, pp.218-219] or [32, pp.367-368]. His original notion of character
only referred to irreducible ones. The following year would see Frobenius
interpret characters as trace functions [23, p.954]. The basic properties of
irreducible characters, such as the orthogonality relations, were first proved
without representations. A treatment in English of the group determinant and
characters without representation theory was given by Dickson in his 1902
exposition [11] of Frobenius’ work.

Rather than go through all of Frobenius’ original proof of the factorization
of ©(G), which did not use representations, we will invoke representation
theory in the next section to explain its decomposition.

However, to give a flavor of how Frobenius analyzed the group determinant,
we prove a property of its irreducible factors by his techniques (Theorem 3
below). Recall n = #G. We will abbreviate O(G) as O.

LEMMA 1. The adjoint of the group matrix (Xgn-1) has (g,h) entry
(1/n) 00 /0X 51 .

Proof. Let D be the determinant of a matrix (a, ;) doubly indexed by G
and having independent entries, so D is a polynomial in Zla, ,]. The adjoint
of the matrix (ay;) is (OD/0ay 4).

Let ¢: Zlay ] — Z[X,] be the ring homomorphism where wlagn) = Xgp-1.
So (D) = ©, the group determinant. We want to show

< oD ) _ 1 06
90 Oapg) 1 OXpg—1

By the chain rule, or checking on monomials, for all f in Zla, ] and r

in G
Op(f) a \ _ of
ox, Z gO(aag,h> —ZSO< >’

gh“lzr keG aagok,hok

where (go, hp) is any pair with 9ohy b=,
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Let 1, be the ring automorphism of Z[a,,] where ti(agn) = agink-
Then Y, = ¢, so

Op(f) Oy 'f O 'f oS
ox, Z oV (561;,;,0 > N Z @(aa;,ho ) N Z i (aago,ho ) -

keG keG keG

Now set f = D, and note (D) =D. [

Letting Y, = (1/n) 9©/0X,-1, we see the adjoint of (X ,-1) has the form
(Ygp—1).

Polynomials in the X,’s can be viewed as functions on matrices of
the form x = (x4,-1) or as functions on elements of the group algebra
X=3, g X9 For example, viewing the group determinant © as such a function,
it 1s multiplicative: O(xy) = O(x) ©(y). The element xy has g-coordinate
Zab: g XaYb-

The next theorem, which appeared in [22, Sect. 1], shows the multiplicative
property of ® passes to its irreducible factors, and in fact characterizes them.

THEOREM 3. Let ® be a homogeneous irreducible polynomial in the
variables X,. Then ®(xy) = ©(x) D(y) if and only if ® is monic in X, and
is a factor of ©.

Proof. First we assume @ is monic in X, and is a factor of ©.

Choose indeterminates {Xg} and {Y,}. Let Z, = >, X,Y), so in
C[X,,Ys] we have O(Z) = O(X) O(Y). Since ®(Z) | ©(Z), D(Z) = AX)M(Y)
for some polynomials A in the X’s and M 1in the Y’s. Set Y, = 1
and Y, = 0 for g # e. We get ®X) = AXM(1,0,0,...). Similarly,
oY) =A1,0,0,...)M(Y). Therefore

OX)D(Y) = D(Z) A(1,0,0,...)M(1,0,0,...) = DXY)D(1,0,0,...).

Since ® is homogeneous and monic in X,, ®(1,0,0,...) =1.

Now assume @ is multiplicative.. Since @ 1s homogeneous, we have
®(X,,0,0,...) = cX¢. Letting ¥, = 1 and Y, = 0 for g # e, we have
dX) = ¢X)P(1,0,0,...), so ¢(1,0,0,...) = c = 1, hence ® is monic
m X,.

By Lemma 1, we can write the adjoint matrix of (X,,-1) in the form
(Y4u-1). For this choice of the Y’s, we have in C[X,] that ®(X)D(Y) =
®(©,0,0,...)=0% s0 ®|6. O
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The “if”” direction did not need @ to be irreducible. It can also be removed
as a hypothesis in the “only if” direction by weakening the conclusion to @
dividing a power of O.

Theorem 3 allowed Frobenius to establish a conjecture of Dedekind [10,
p.422], which said that the linear factors of ©, monic in X,, are related
to the characters of the abelian group G/[G,G]. More precisely, Frobenius
showed the linear factors of ®, monic in X,, are exactly the polynomials
> g X(@Xg, where x: G — C* is a character, and each such linear factor
arises exactly once in the factorization of ©. (Since we already showed such
polynomials are factors, only the “if” direction of Theorem 3 is needed and
therefore Lemma 1 is not required for this.) The reader is referred to the
paper of Frobenius [22, Sect.2] or Dickson [11, Sect.6] for details of this
argument.

It is of interest to see what is mentioned about the group determinant
in Thomas Muir’s The Theory of Determinants in the Historical Order of
Development, which aimed to describe all developments in the subject up
until 1900. In the preface to the final volume, Muir expresses the hope
that “little matter of any serious importance has been passed over that was
needed for this History.” There are many references to the circulant, one to
Dedekind’s calculation of ©(S3), but there is no mention of any work on the
group determinant by Frobenius. However, his List of Writings in the 1907
Quart. J. Pure Appl. Math. shows he was aware of such papers.

5. FACTORING THE GROUP DETERMINANT BY REPRESENTATION THEORY

We now use representation theory to completely factor the group determi-
nant. As in the second proof of Theorem 2, let’s compute the matrix for left
multiplication in C[G] by an element ) a,g, with respect to the basis G of

C[G]. Since
(Z agg>h - Zagh_lga
g g

the matrix for left multiplication by » a,g is (@gp-1). Hence
det(agy-1) = Neggy/c (Z agg) :
g

Since C[G] decomposes into a product of matrix algebras, this norm will
decompose into a product of determinants. More specifically, let {(p,V,)} be
a full set of mutually nonisomorphic irreducible representations of G (over
the complex numbers). Then the map
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CIG1— ][ Bndc(V,),

p irred
given by
Zagg = (Z agp(g)) o
geG g€G pITe

1s an isomorphism of C-algebras. Thus

Neiai/c (Z agQ) = H NEnde(v,)/c (Z agP(Q))
g g

pirred

_ H det (Z agp(g)> deg(p) |
g

pirred
This last equation arises from the fact that in the endomorphism ring End(V)
of an m-dimensional vector space V, left multiplication by an element is a

linear map End(V) — End(V) whose determinant is equal to the m-th power
of the usual determinant of the element. Therefore

OG) = detXp- ) = [] det(ZXgp(g)>deg(p).
g

p irred
Note det(d> g Xg4p(g)) 1s a homogeneous polynomial of degree deg(p), monic
m X,.
We now show that the irreducible factors of ®(G) (which are monic in X,)

can be put in a one-to-one correspondence with the irreducible representations
of G by proving

THEOREM 4. For an irreducible complex representation p of G,
(i) the polynomial det(> " Xyp(9)) is irreducible and

(ii) p is determined by det(Zngp(g)).
We begin with a lemma originally due to Burnside [4].

LEMMA 2. If (p,V) is an irreducible representation of G, then the
C-algebra map C[G] — Endc(V) given by dec agg — dec agp(g) is
onto. That is, the transformations p(g) linearly span Endc(V).

Proof. This map is basically a projection of C[G] onto one of its simple
C[G]-submodules, so it is onto. Alternatively, for a proof that works for
representations over any algebraically closed field, even one with characteristic
dividing the size of G, see [33]. [J
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LEMMA 3. Let p: G — GL4(C) be a representation. Write

> Xgp(9) = Ly,

geG

where the L;’s are linear polynomials in the X4's. If p is irreducible then
the L;’s are linearly independent over C.

Proof. By Lemma 2, any set of d> complex numbers (z;) arises as
S agp(g) = (Lij(ay)) for some vector (az) in C". So

> eyly =0 in ClXg1=> Y cyliag) = 0 for all (ag) € C”
= ZCU’ZU = ( for all (Z,'j) - Cd2
= all Cij = 0. O]

Proof of Theorem 4. (i) By Lemma 3, choose n— deg(p)*> homogeneous
linear polynomials L; such that {L;,L;} is a basis of the homogeneous
linear polynomials in C[X,]. Then we can move between the sets {X,} and
{Lij, Ly} by a linear change of variables. This gives a C-algebra automorphism
of C[X,4], so the set {Lij, Ly} consists of algebraically independent elements
over C. In particular,

det(Z Xgp(g)> = det(L;)

geG

is the determinant of a matrix whose entries are algebraically independent.
It is a standard fact (see [36, p.96] for an elementary proof) that such a
determinant is irreducible in C[L;], so it is also irreducible if we append the
extra algebraically independent variables {L;} to the ring, so this polynomial
is irreducible in C[L;, Ly] = C[X,].

(i) We need to show that p is determined by det(}  X,p(g)). It is enough

to show the corresponding character ), is determined, and that is what we
will do.

The number x,(e) 1s the degree of the homogeneous polynomial
det(dXgp(g9)). For h # e, we will recover x,(h) as the coefficient of
x$EP~1x,  To see this, we ignore all variables besides X, and X, by setting
X4 equal to O for g # e, ~. Then our polynomial becomes det(X.I + X, p(h)).
We want to know the coefficient of XS ~!X, in this polynomial. For any
matrix A, the polynomial det(T'/ + A) in the variable T has second leading
coefficient Tr(A). Apply this to A = X;p(h), whose trace is x,(h)X,. []
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Let’s work through the proof of Theorem 4(i) in a case we’ve already
seen, G = S3. Recall

m =), m=(123), m3 =(132), mqy =(23), 75 = (13),76 = (12).
Let p: S3 — GL(V) be the irreducible 2-dimensional representation on
V = {(21,22,23) - C3 CZ1t+ 2+ 23 = O},

given by permutation of the cooordinates. Using (1,0,—1),(0,1,—1) as an
ordered basis of V, we get the matrix realizations

1 0 -1 -1 1
[,0(771)]:<O 1>> [P(Wz)]=< | O>’ [,0(7@)]:(_(1) _1>>

1 0 —1 -1 0 1
[p(vr4)]:<_1 _1>, [p(Ws)]=< 0 1>, [/)('7r6)]:<1 0)'

Therefore

6
X1 —Xo+X4—Xs —Xo+X5—Xs5+X¢
.1 ) Xilpm)] = ( :
i—1 XZ‘“X3“X4+X6 Xl—X3—X4+X5

which tells us what the L; in Lemma 3 are, 1 < i,j < 2. Taking the
determinant of the right hand side of (5.1) gives an expression ad — bc for
the factor @3 of ©(S;) where a,b,c,d are linear polynomials with integer
coefficients (such an expression was given by Dickson in [14, Eq.2]). In the
expression of Dedekind’s for @3 which we saw earlier, a, b, ¢, and d had
coefficients involving cube roots of unity. The fact that we can get integer
coefficients is related to the 2-dimensional irreducible representation of S
being realizable in GL,(Z). In general, the irreducible factors of ©(S,) have
integer coefficients since all irreducible representations .of S, are defined over
the rational numbers.

As a basis of the linear forms in C[X;] we use the L; and matrix entries
of all > X;p/(m;) where p’ runs over irreducible representations of S; not
isomorphic to p. These are the trivial and sign representations, which yield
L1 :Xl —|—X2 +X3 +X4 +X5 +X6 and L2 :Xl +X2 +X3 ~X4 ——XS —X6,
so we can also use X; + X, + X5 and X4 + Xs + Xg. These are essentially
elements Dedekind came across when factoring ©(S3;) into linear factors in
some hypercomplex number system. Compare this means of manufacturing
w1 + m + m3 and mwy 4+ w5 + mg with Dedekind’s calculation.

As an illustration of the proof of Theorem 4(ii), the quadratic irreducible -
factor of ©(S3;) corresponds to the irreducible 2-dimensional representation
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of S5, and its coefficients of X X; for 2 <i < 6 (some of which are Zero)
coincide with the character values at ;.

The proof given for Frobenius’ theorem on the factorization of ®(G) can
be adapted to show that for any finite-dimensional complex representation p
of G, the determinant attached to p, namely

0,(G) = det( Y Xy09))

g€eG

decomposes into homogeneous irreducible factors (monic in X, ) in accordance
with the decomposition of p into irreducible representations. Frobenius’
theorem on the group determinant involves the regular representation.

In Frobenius’ initial work on the group determinant, he felt the most
remarkable (and difficult to prove) feature of the factorization was that the
degree of each irreducible factor coincides with its multiplicity as a factor.
We recognize this feature as a familiar statement about the multiplicity of
irreducible representations in the regular representation.

Since every factor (monic in X,) of the group determinant has the form
det(>” p X4p(g)) for some representation p, the “if” direction of Theorem 3 gets
a second proof from the definition of a representation and the multiplicativity
of determinants.

According to Hawkins [26, 27], Frobenius’ original approach to characters
of G (which is not the first one that appeared in print) was as follows. Let
® be an irreducible factor of ©(G) which is monic in X, and of degree d.
Define the associated character x by letting x(g) be the coefficient of X¢~!
in 0®/0X,. This is equivalent to the description we gave in the proof of
Theorem 4(i1), except that we speak of the character attached to an irreducible
representation of G while Frobenius (at first) spoke of the character attached
to an irreducible factor of the group determinant of G.

Here 1s another point of view that Frobenius had on characters. Let @
be an irreducible factor of the group determinant of G, monic in X, and of
degree d. We regard @ as a function C[G] — C by ) a,g9 — ®(a,). Let
x =) agg € C[G]. For a variable u, set

(5.2) D +ue) =u' +Cou M+ +Cy

where C; is a polynomial function of the a,’s which is homogeneous of
degree /. In particular, C; is a linear homogeneous polynomial of the ag’s.
Frobenius observed in [22, p. 1360] that its coefficients are the values of the
character x corresponding to @ : C; = >° g X(g)ag. Since (5.2) is essentially a
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characteristic polynomial, so C; is basically a trace, the connection Frobenius
eventually found between characters and traces is not surprising.

In [22], Frobenius explicitly showed how all the coefficients of an
urreducible factor of the group determinant can be expressed explicitly in
terms of its corresponding character. We will show more generally that for
any (complex) representation p of G, irreducible or not, the coefficients of
det(d_Xgp(g)) can be expressed in terms of x,. Our discussion is based on
. the matrix formula (5.3) below, which we now explain.

For N > 1 and o € Sy consisting of disjoint cycles of length Ny,...,N,,
define a trace map Tr,: My(C) — C by Tr,(A) = Tr(A") - ...  Tr(A"). For
example, Tra)w).. oA = (TrA)V, Trg,.. wA) = Tr(AY), and Tr,(ly) = d".
If 0 and 7 are conjugate in Sy, they have the same cycle structure (and vice
versa), so Tr, = Tr,. Note Tr, is typically not linear.

For our application, we set N = d. We will prove that for A € M,(C),

1
(5.3) det(4) = — > sgn(o) Trg(A).
oESy
A formula equivalent to (5.3) was used by Frobenius in [22, Sect. 3, Eq. 8].
For example, when d = 2 let A have eigenvalues A and p. The right
hand side is

%((TrA)z — Tr(A%)) = %((/\ +w)? — (A + p?) = Au = det(A).

To prove (5.3), let Ai,...,A\; be the eigenvalues of A, repeated with
multiplicity. For k£ > 1, let s = A + -+ + )k,

If o has m; 1-cycles, m, 2-cycles, and so on, then m|+2my+- - -+dmy; = d
and sgn(o) = [[((—=DF1)™. Since S kmy = d, sgn(o) = ()¢ ¢,
Also, Tr,(A) = s7"s5% - ... s;*. Therefore

d
sgn(o) Tr,(A) = (—1)? H(—l)’”ks’,?k .
k=1
If o and 7 have the same cycle structure, sgn(o) Tr,(A) = sgn(7) Tr.-(A).
For our evaluation of i
57 > sen(0) Tro(4),
oESy
we want to collect all the terms corresponding to permutations with the
same cycle structure. The permutations in S; having a cycle structure with

my l-cycles, m; 2-cycles, and so on form a conjugacy class whose size is
d\) TI¢_, k™ - my! . Thus
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o TT st
—ZSgn(U)Tra(A) >, D d'H P
a! o€Sy my,my,-- >0 ks
m;+2nmy+---=d

= (—l)d Z H ( ki?:/:: L,

my g, >0 k=1

my+2my+---=d
We want to show this equals A - ... Aq. To do this, we use generating
functions :
d
LMy (=)™ (set)™
Sy 925y v 155
i>0  my,ma,-- 20 k=1 i>0 my,my,---20 k=1
m+2my+--=i m1+2m2+ =]
d
I () =T
k mk
k=1m>0 k=1
d k d d k 4k
_ S _ At
=ewp(~) %) =en(- XX %)
k=1 j=1 k=1
d d d
-TI Xp( S /k) = [ expllog(1 — i) mod #+!
j=1 k=1 j=1
d
= H(l — \it) mod 1.
j=1
The coefficient of @ here is (—1)¢)\; - ... A4, as desired.

More generally, for N > 1 and A € My(C), the coefficient of ¥ in

N
H;Izl(l — Ajt) 18 (— 1N Tr(A\A), so by an argument similar to the one above,

N ni
T(AA) =D Y H ( k13m: - ]—Vl—' 3 sgn(0) Try (A).

my,my,--->0 k=1 o&Sy
my+2my+---=N

It is interesting to write (5.3) using the classical definition of the determinant
of the d x d matrix (a;) :

1
Z SgH(U)alg(l)QZU(Z) Cee Ado(d) = g'- Z sgn(d) Tra((alj))'

o€Sy ) oc€ESy

Although these sums are both taken over S,, the addends corresponding to
the same permutation o are typically not equal. For instance, for a diagonal
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matrix the left hand side has only one nonzero term while the right hand side
has many nonzero terms.

Let’s apply (5.3) to representation theory. It says that for a d-dimensional
representation p of G,

det(Z Xgp(g)> = % > sgn(o) Tr, (Z Xg P(g)>

g€eG o€Sy g€eG

= (—1) mhg;m kl;[l E{;kln):j (Tr((z P(Q)Xg)k>>
my+2my+---=d

which equals

d my my
VDY H;fnik!( > X gy X))

ml>m2)"'20 k=1 (gl
my+2my+---=d

So all coefficients can be expressed in terms of ), . For the connection between
the coefficients and the higher characters of p, see Johnson [30, p.301].

In particular, if p is 1-dimensional then det(ZXgp(g)) = > xp(@X,.
For 2-dimensional p,

det(SXop) = 5 (Eo@Xy) — 5 3 xplahX X,

1
=3 Z (X (DX (M) — x,p(gh)X g X},
(9,hEG?

1
=5 2 0@ = xp(g*)X;
g

+ > O@xe() — xp(gh) XXy
{g,h} unequal

To conclude this section, let’s use the point of view developed here to
factor the group determinant of Dg, the group of symmetries of the square
(also denoted by some as Dy). We index the elements of Dg as

g =1, 9 =013)24,  g3=(1234), 94 = (1432),
g5 =(013),  ge=(24), g1 =01HE4H, gz = (14)(23).




THE ORIGIN OF REPRESENTATION THEORY 383

The conjugacy classes are

e ={1}, o ={g}, cs={93, 94}, ca ={95: 96}, ¢5 = {97,938} -

The character table of Dg 1is

C1 ) 3 C4 Cs
X1 1 1 | | 1
X2 1 1 1 —1 —1
X3 1 I -1 1 -1
X4 1 1 -1 =1 1
X5 2 =2 0 0 0

Therefore O(Dg) = P O, O3 ©, D2, where

D =X+ X+ X3 +X4+ X5 +Xe + X7+ Xs,
O, =X, + X+ X3+ X4 — Xs — X — X7 — X3,
Dy =X, + X5 — X3 — X4 + X5 + X6 — X7 — X,
Oy =X +Xo — X3 — X4 — X5 — Xg + X7 + X3,

Dy = det(z X, p(g)) .

where p is the 2-dimensional irreducible representation of Dg. So

D5 = Z (5@ = xs@NX2+ Y es(@xsth) — xs(gh) XX,
{g,h} unequal
:X% + X2+ X3 X7 X2 X2 X5 X3
— 2X1 Xy — 2X3X4 4+ 2X5Xg + 2X7 X5 .

Although Qg and Dg have identical character tables, and all coefficients of an
irreducible factor of the group determinant are determined by the corresponding
character, the quadratic irreducible factors of ®©(Qg) and ©(Dyg) are different.
This illustrates that the determination of all coefficients of a factor from its
character depends on the character as a function on group elements, not only
on conjugacy classes.
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6. THE GROUP DETERMINANT IN CHARACTERISTIC p

In 1902, six years after Frobenius began his work on ®©(G) and characters
over the complex numbers, Dickson began studying these ideas over fields
with characteristic p, perhaps as an outgrowth of his interest in finite fields
and linear groups. As the variables x, run over a field F, the matrices of
the form (xg,-1) with nonzero determinant are a group under multiplication.
Dickson was interested in the structure of this group, and its size when F is
finite. In terms of the group algebra, this group is the unit group of F[G],
although Dickson did not use this point of view in his papers. He worked out
examples for explicit groups in [12, 13, 14].

In [15] he examined ©(G) mod p when #G is not divisible by p, indicating
the case p | #G was quite different, illustrating some examples when p | #G
in [16]. In 1907, Dickson presented a more general account of what happens
in characteristic p, allowing for the possibility [17, 18] that #G is divisible
by p. We will discuss some of Dickson’s results in this section, although our
proofs are not always the same as his.

First let’s look at examples. We’ve already indicated how the group
determinant of an abelian group factors in characteristic p. Let’s factor ©(S3)
over an algebraically closed field of characteristic p. Recall that

0(S3) = ®D,P3
where

O =X+ X, + X5+ X4+ X5 + X,
D, =X; + X7+ X35 — X4 — X5 — X¢,
O3 =X? + X7+ X5 — X5 — X2 - X;
— X1Xo — X1 X3 — Xo X3 + XuXs + XaXe + XX -
Over the complex numbers, @3 is an irreducible polynomial. Dedekind’s proof
of this uses primitive cube roots of unity, which exist in characteristic p for
p # 3, in which case his proof still applies. For p # 2 we have @, # @,

so except in characteristics 2 and 3, ©(S3) factors in characteristic p exactly
as it does in characteristic 0. In characteristic 2 we get @ = ®@,, so

O(S3) = (®;P3)*> mod 2.

Unlike the factorization over C, an irreducible factor in characteristic 2 appears
with multiplicity not equal to its degree. Since

DD, = D3 + 3(X1 Xy + X1 X3 + XoX3 — XuXs — XuXe — X5X6),
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in characteristic 3 we have
O(S3) = (P;P,)° mod 3.

Again we have irreducible factors appearing with multiplicity not equal to
their degree.

From now on, F denotes a characteristic p algebraically closed field
(except in Theorem 7).

If p{#G, then F[G] is semisimple, in which case the factorization of
©(G) over F behaves just as over the complex numbers: irreducible factors
(that are monic in X, ) are in bijection with irreducible representations of G in
characteristic p and the multiplicity of an irreducible factor equals its degree.
The proofs over C go through with no changes.

What if perhaps p | #G ?

First, note that Theorem 3 is still true in characteristic p, by the same
proof. (The entries of the adjoint matrix as given in Lemma 1 make sense
mod p since they are minors from the group matrix and are thus polynomials
with integer coefficients.)

Therefore linear factors of ©(G) mod p arise exactly as over the complex
numbers, i.e. characters x: G — F* correspond to linear factors ) x(¢)X,.
The treatment of linear factors by Frobenius [22, Sect.2] or Dickson [11,
Sect. 6] applies in characteristic p to show all linear factors look like this and
they all appear with the same multiplicity (which might be greater than 1).
So the number of distinct linear factors of ®(G) mod p is the p-free part of
the size of G/[G,G], as Dickson first noted in [18, Sect.7].

To write down nonlinear irreducible factors of ©(G) over F, we use
Jordan-Holder series instead of the (possibly false) complete reducibility of
the regular representation of G over F. This works for any F-representation
space (p,V) of G, so we work in this setting.

Consider the factor modules appearing in a Jordan-Holder series of V as
an F[G]-module:

O=VoCViC.---CV,=V,

where each V; is an F[G]-submodule and V;/V,_; is a simple F[G]-
module. Viewing ) a,g € F[G] as an F-linear operator V — V, it induces
endomorphisms of each V;/V;,_; (1 <i<r) and

6.1) det(z a, p(g)) _ ﬁdet(Z agp(g)lv‘/v ) .
i=1 S

Therefore the determinant attached to p, ©,(G), factors into a product of
determinants attached to the simple constituents of a Jordan-Holder series
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for V as an F[G]-module. A representation and its semisimplification have
identical group determinants.

We have seen before that an abelian p-group has mod p group determinant
equal to (ZXQ)#G. Let’s generalize this to any finite p-group [17, Sect.S5].

THEOREM 5. Let G be a finite p-group, p: G — GL(V) a mod p
representation of G. Then

@,;(G) _ (ZXg>dim(v) |
g

In particular, ©(G) = (5 X,)*C.

Proof. 'The only irreducible representation in characteristic p of a p-group
is the trivial representation. For the trivial representation of G, ) ag,g acts
like multiplication by ) ag,, so the determinant of this action is ) a,. Now
use (6.1). [

To show the determinant attached to an irreducible representation over F
is an irreducible polynomial, we follow Dickson [18, Sect.5] and begin by
extending Lemma 2.

LEMMA 4. If (p,V) is an irreducible representation of G over any
algebraically closed field, then the transformations p(g) linearly span End(V).

Proof. The second proof of Lemma 2 is valid in this setting. [

COROLLARY 1. If (p,V) is an irreducible representation of G over any
algebraically closed field, then its character is not identically zero.

Proof. Assume x,(g) =0 for all g € G. Then Tr(}_a,p(g)) =0 for all
scalars ay. By Lemma 4, the trace is identically zero, which is false.  []

THEOREM 6. If (p,V) is an irreducible representation of G over any
algebraically closed field, then

(1) 0O,(G) = det(> g Xg4p(g)) is an irreducible polynomial and
(i1) p is determined by ©,(G).

Proof. The proof of Theorem 4(1) applies to any algebraically closed
field. The same is true of Theorem 4(ii), because absolutely irreducible
representations are determined by their character and irreducibility is the
same as absolute irreducibility over an algebraically closed field.  []
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If a representation p of G is reducible. then O,(G) is a reducible
polynomial, by (6.1).

Applying (6.1) and Theorem 6 to the regular representation, we see that
even in characteristic p. irreducible factors of the group determinant (monic
in X,) are in bijection with irreducible representations.

To be accurate. the second part of Theorem 6 was not stated by Dickson,
but he did write about a related issue. In [18. Sect.35] he noted that over C
Frobenius “gives a method of determining all the coefficients of @ in terms
of the [corresponding] characters \(R)". Here @ is the determinant attached
to an irreducible representation. We illustrated such a formula earlier. Dickson
added that “The method must be modified in the case of a modular field.” The
formula over C breaks down mod p when the degree of the representation
is greater than or equal to p.

Dickson never indicated that he had a general modified method. but he
worked out explicit formulas for coefficients of irreducible factors of degree
2 in the group determinant mod 2. and of degree 3 in the group determinant
mod 2 and mod 3. in terms of the corresponding character.

Here is an example of one of his formulas. Let p be a 2-dimensional
representation of G. Set

A= ZXgp(gJ cdet(A —ul) =" — Du— O .

where @, = Sg (@)X, and @- = O,(G). say

2= cpiX X
g<n
The ordering on G is introduced to avoid repeating monomials. Qur task is
to find a formula for c¢,; when p is irreducible.

Dickson [13. p.483] used the Newton identities relating the symmetric
functions and the power sums in the eigenvalues of A to show in all
characteristics that

20,5 = 200U — \(gh).
for g <h.
U9)g.g = WD) — (gD

and

WWeg.g = =337 — 3\@Ngh) — \ (gD () — (9> ().

for g = h. To compute C4.» for a characteristic 2 representation, view our task
first as a problem in matrices with indeterminate entries over the integers (with
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p replaced by any such 2 x 2 matrix-valued function on G, not necessarily
multiplicative), so we can cancel the 2 on both sides of the first formula and
then reduce mod 2, thus getting a valid formula for ¢, when g < A. By
Corollary 1, x is not identically zero, so the last two equations suffice to
determine ¢4 4. In characteristic 2, we get the formula

I x(g”h) + x(9)x(gh)
99 x(h) !

for any A in G with x(h) #£ 0.

Looking back at the example of the factorization of ©(S3) in characteristics
2 and 3, we saw that irreducible factors do not appear with multiplicity equal
to their degree. This is a general phenomenon first proven by Dickson in
[17]. His arguments involve binomial coefficient manipulations (coming from
a change of variables in the group matrix), which we will replace with the
language of induced representations.

Let T be the trivial representation space in characteristic p for a group G.
The regular representation of G is Ind?l}(T). For a p-Sylow subgroup H
of G,

Ind{,,(T) = Indj;(Ind{}, (7)) .

THEOREM 7. If G is a finite group, H a subgroup, F a field, and W and
W, are F -representation spaces of H with the same Jordan-Holder quotients,
then Indg(Wl) and Indf,(Wz) are F -representation spaces of G with the same
Jordan-Holder quotients.

Proof. Using a decomposition of G into left H-cosets, F[G] is a
free right F[H]-module, so the operation Indg(-) = F[G] ®Fp (-) 1S an
exact functor. Therefore Indg(Wl) and Indg(Wg) admit decomposition series
with isomorphic quotients, so their refinements to Jordan-Holder series have
isomorphic quotients.  []

Let #G = p"m, where m is not divisible by p. Any representation in
characteristic p of the p-Sylow subgroup H of G has Jordan-Ho6lder quotients
which are all equal to the trivial representation, so by Theorem 7 the Jordan-
Holder quotients of Ind?l}(T) coincide with those of

pl‘ pl' G
Ind% (@ T) = P Ind5(T).
i=1 i=1
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Since Ind%(T) is the permutation representation of G on the left cosets of H,
we have in characteristic p that

(6.2) ®(G) =D,

where D is the determinant attached to the mod p permutation representation
of G on the left cosets of a p-Sylow subgroup H of G. (I thank Ron Solomon
and Pham Huu Tiep for showing me many G where this representation 1s not
semisimple.)

Let’s get an explicit formula for D. Denoting the left H -cosets of G by
qH,...,gnH, the space for this representation s V= 6}7;1 Fegy with the

usual left G-action on the basis. For g; € {g1,..-,9m}-

n

(S as)enn = S = a6 = 33X Yoo
seG SEG seG i=1 heH
Therefore
6.3 D= det( X ) |
( ) Z gihgj : 1§i,J§m
heH

Equations (6.2) and (6.3) constitute the theorem of Dickson in [17, Sect. 3],
except he used right coset representatives. If p does not divide the size of G,
then D is the group matrix and (6.2) becomes a tautology, with p" = 1.

In [17, Sect. 10], Dickson indicated one way to possibly factor D. Let K be
the normalizer of H in G. Then Indg(T) = Indg(Indg(T)). The representation
IndX(T) is the regular representation of K/H, a group whose size is prime to
p, so this representation is semisimple in characteristic p. Decomposing this
representation into irreducibles (each such factor has multiplicity equal to its
degree), we get a corresponding factorization of D, although not necessarily
into irreducible factors.

The study of modular representations remained largely unexplored after
Dickson, until Brauer’s work beginning in the 1930s. See Curtis [7] for a
discussion of Brauer’s ideas.

Brauer’s initial papers contained some results having a bearing on the
group determinant in characteristic p. For example, he gave his own proof
of a consequence of equation (6.2), namely that every irreducible mod p
representation of a group with size p"m (m prime to p) occurs as a composition
factor of the regular representation with multiplicity divisible by p”. And while
Dickson did not examine the number of irreducible factors (monic in X,) of
the group determinant mod p, ie. the number of nonisomorphic mod p



390 K. CONRAD

irreducible representations of a finite group, a theorem of Brauer says this
number equals the number of conjugacy classes in the group consisting of
elements with order prime to p.

7. RECENT RESULTS

Character tables do not provide a way to distinguish any two finite
groups, in general. For example, for any prime p the two nonisomorphic
nonabelian groups of order p® have the same character table. Can we find
a computational tool extending the character table which will distinguish any
two non-isomorphic finite groups ? In 1991, Formanek and Sibley [19] showed
that if there is a bijection between two groups G and H which converts O(G)
to ®(H), then G and H are isomorphic. Since the irreducible characters can
be read off (in principle) from the factors of ©(G), we see O(G) is one
answer to the question. However, if #G is large then ©(G) is too hard to
compute. Is there something closer to the character table which works? Yes.
See the articles of Hoehnke and Johnson [28, 29] and Johnson and Sehgal [31].
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