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332 H. MURAKAMI, T. OHTSUKI AND S. YAMADA

§3. INVARIANTS OF LINKS

In this section, we give a graphical definition of the HOMFLY polynomial
of oriented links. For an oriented link diagram D, we define (D), by the
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and
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Then we have

THEOREM 3.1. (D), is invariant under the Reidemeister moves Il and III.

Proof. From Lemma 2.2, we have
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We also have

N ) R 2 /!
) S)-E
) R 2 )N

from Lemmas 2.1, 2.3 and 2.4 and so (D), is invariant under the Reidemeister

move II. Next we prove the invariance under the Reidemeister move III. Since
we have
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it suffices to show that
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we have the required formula from Lemma 2.6.

Since the Reidemeister move III with other types of orientations can be
obtained from the Reidemeister moves II and III described above (see [12]),
the proof is complete. [

If we define P,(D) = ¢"/2¥®) (D) with w(D) the writhe (the algebraic
sum of the crossings) of D, then we have

THEOREM 3.2. P,(D) is invariant under the Reidemeister moves I, II, and
Il and satisfies the following skein relation.

q"*Py(Dy) — g PPy(D_) = (¢* — ¢~ VH) Pu(Dy),

where Dy, D_ and Dy are identical link diagrams except near a crossing
as described in Figure 3.1.

D+:%, D_:X, DO:I I

FIGURE 3.1

skein triple

The proof of this theorem follows immediately from the following lemma.
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Proof. From Lemmas 2.1 and 2.3, we have

w (PP

1
(3.2) =(q1/2[n]—[n—1])< I >

Since
gl —[n—11=¢q"7,
the first equality follows. The second equality follows similarly and the proof
is complete. [

Therefore P, defines a link invariant and so we can put P,(L) = P,(D)
for the link L presented by D. Then P, is a version of the HOMFLY
polynomial [1], [13].

REMARK 3.4. If we define [D], to be

R T
[ e Tl

with A an indeterminate, we also have a framed link invariant.

When n=2 and A = q—l/ 4 we have a version of the Kauffman bracket
naturally defined from representation theory of U,(s((2,C)) [6, Theorem 4.3].

For n = 3 we have G. Kuperberg’s recursive formula [8] as follows.
Consider an oriented, trivalent, plane graph with flow less than or equal to
three. If we reverse the orientations of all the edges with flow two, remove all
the edges with flow three, and forget the flow, then we have a trivalent graph
without flow such that at every vertex all the edges are in or out. Putting
A = ¢g~/¢ and replacing g with ¢!, we have Kuperberg’s formula. (This
corresponds to the fact that the two-fold anti-symmetric tensor of the vector
representation of SU(3) is isomorphic to its dual.) See also [12].
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