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§3. Invariants of links

In this section, we give a graphical definition of the HOMFLY polynomial
of oriented links. For an oriented link diagram D, we define (D)n by the

following.
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Then we have

THEOREM 3.1. (D)n is invariant under the Reidemeister moves II and III.

Proof. From Lemma 2.2, we have
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We also have
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from Lemmas 2.1, 2.3 and 2.4 and so (D)n is invariant under the Reidemeister

move II. Next we prove the invariance under the Reidemeister move III. Since

we have
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it suffices to show that

V \
V

h
Since

In





336 H. MURAKAMI, T. OHTSUKI AND S. YAMADA

n

we have the required formula from Lemma 2.6.

Since the Reidemeister move III with other types of orientations can be

obtained from the Reidemeister moves II and III described above (see [12]),
the proof is complete.

If we define Pn(D) w(D)) (p)n with w(D) the writhe (the algebraic

sum of the crossings) of D, then we have

THEOREM 3.2. Pn(D) is invariant under the Reidemeister moves I, II, and

III and satisfies the following skein relation.

where D+, D_ and Dq are identical link diagrams except near a crossing

as described in Figure 3.1.

The proof of this theorem follows immediately from the following lemma.

qn/2Pn(D+) - q~n/2Pn(D_){q"2 -

Figure 3.1

skein triple

Lemma 3.3.

and
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Proof. From Lemmas 2.1 and 2.3, we have

337

(3.1)

(3.2)

m D1

ql'2[n]-{n- 1])(

Since
a*nql'2[n\ -[n-1] q"

the first equality follows. The second equality follows similarly and the proof

is complete.

Therefore Pn defines a link invariant and so we can put Pn(L) Pn(D)

for the link L presented by D. Then Pn is a version of the HOMFLY

polynomial [1], [13].

Remark 3.4. If we define [D]n to be

v/2 - A

and

A"V1/2 A~

with A an indeterminate, we also have a framed link invariant.

When n 2 and A — q~^4, we have a version of the Kauffman bracket

naturally defined from representation theory of Uq(si(2,0)) [6, Theorem 4.3].
For n — 3 we have G. Kuperberg's recursive formula [8] as follows.

Consider an oriented, trivalent, plane graph with flow less than or equal to

three. If we reverse the orientations of all the edges with flow two, remove all
the edges with flow three, and forget the flow, then we have a trivalent graph
without flow such that at every vertex all the edges are in or out. Putting
A q~1/6 and replacing q with q~l, we have Kuperberg's formula. (This
corresponds to the fact that the two-fold anti-symmetric tensor of the vector
representation of SU(3) is isomorphic to its dual.) See also [12].
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