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§1. INVARIANTS OF GRAPHS

In this section we define an invariant of colored, oriented, trivalent, plane
graphs.
Fix an integer n > 2 throughout this paper and put

N={-(n-1/2,~(n—1)J2+1,...,(n—1)/2}.
For disjoint subsets A; and A, of NV we put
(A1, A2) =#{(a1,a2) € A} X Ay | a1 > av}.

Let G be an oriented, trivalent, plane graph with “color” or “flow” on each
of its edges. Here a flow f is a map from the edge set to positive integers
less than or equal to n such that for every vertex v in G the sum of its
values on the edges coming into v is equal to that on the edges going out
from v (see Figure 1.1). So we may say that G is a network with infinite
capacity without source or sink. We also note that at each vertex two edges
are “in” and one edge is “out”, or two edges are “out” and one edge is “in”.
We call these two in- or out-edges the /egs and one out- or in-edge the head
of the vertex.

FIGURE 1.1
A graph with flow

A state o is an assignment of a subset A of A/ to each edge e such that
#(A) = f(e) and, moreover, at each vertex the union of subsets assigned to its
legs coincides with that assigned to its head, where #(A) is the number of
elements in A (see Figure 1.2). We denote by o(e) the subset of A/ assigned
to an edge e.
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{-1,0,1}

FIGURE 1.2
A state of the graph with flow in Figure 1.1

Given a state o, we define the weight wt(v; o) of a vertex v to be

qf(el)f(ez)/4~7f(0(€1),0(62))/2
Y]

where ¢ is an indeterminate, and e; and e, are left and right legs respectively
with respect to the orientation of G (Figure 1.3).

€y ]
or
€ )

FIGURE 1.3

If we replace every edge e with f(e) copies of parallel edges, assign each
copy an element of the subset determined by o, and connect at every vertex
each pair of edges with the same element, we have a union of simple closed
curves each of which equipped with the same element of A (Figure 1.4).

FIGURE 1.4
Simple closed curves defined by Figure 1.2
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Then we define the rotation number rot(c) to be

> a(C)rot(C)
c
where the sum is over all simple closed curves C equipped with o(C) € N/
and rot(C) is the rotation number of C (i.e., 1 if C is counter-clockwise and
—1 otherwise). For example rot(c) = 2 for the state described in Figure 1.2
(see Figure 1.4).
Now we define (G), as follows.

(G), = Z { H wt(v;a)}qmt(”).

o:state  v:vertex

We define (empty graph), = 1. It is clear that this is invariant under
ambient isotopy of R?. Note that our invariant can be regarded as a colored
graph invariant introduced by N.Yu. Reshetikhin and V.G. Turaev in [14]
replacing each vertex by a “coupon”. The coupon with two legs in would
correspond to a projection V; ® V; — V4, and that with two legs out to an
inclusion Vi, — V;®V;, where V; is the urreducible representation of SU(n)
corresponding to the i-fold anti-symmetric tensor of the vector representation.

§2. LOCAL PROPERTIES OF (G),
We will describe some local properties of (G ),. In what follows diagrams
indicated in each equality are identical outside the angle brackets ( ), and
each equality also holds if we reverse all the orientations of diagrams in both
hand sides. A number near an edge indicates its flow. If a flow in a diagram
exceeds n, we disregard the term where the diagram appears.
We put

k/2 _ ,—k/2

q

—q
(k] =
q\72

—4q

~1/2 >

[k]! = [1][2] - - - [A] ,

H L
JIme=a

In the following equations we mean that if we replace the graph appearing
in the left hand side with the one in the right hand side, we obtain the same
value.

and
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