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310 P. C. ROBERTS

free resolution of R/q. Thus Tor®(R/q,R/p) is the homology H;(K. ® R/p).
Applying the above theorem with M = R/p, we deduce that

X(R/q,R/p) = ex(q, R/P).

Since the Samuel multiplicity e;(q, R/p) is always non-negative and is positive
if and only if the dimension of R/p is equal to k, this proves the conjectures
in this case.

Serre’s proof of the multiplicity conjectures in the equicharacteristic case
proceeded by reducing to the case of a regular sequence by reduction to
the diagonal. If R is a power series ring k[[X;,...,Xy]] and M and N
are R-modules with M @z N of finite length, he introduced a new set of
variables Yp,...,Y,; and considered N as a module over k[[Yy,...,Y,]]. He
then defined a “complete” tensor product M ®; N over k as a module over
the ring k[[X1,...,Xy, Y1,...,Yy]] and showed that

k[X ¥j]]

Tor; (M, N) = T (M & N, K[[X;, Y11/ = Yy, .. Xa — Ya)).

Since X; —Yi,...,X; — Y, form a regular sequence, this proves the result
for power series rings, and the conjectures for general equicharacteristic rings
can be reduced to this case by completion and the Cohen structure theorems.

3. GABBER’S REDUCTION TO REGULAR EMBEDDINGS

In this section we describe Gabber’s use of de Jong’s theorem on the
existence of “regular alterations” to reduce the intersection conjectures to
questions on regular embeddings in projective space over R.

As above, let R be a regular local ring and let p and g be prime ideals
of R such that R/p ® R/q has finite length. Let d be the dimension of R,
let » be the dimension of R/p and let 7 be the dimension of R/q.

The following theorem of de Jong [2] makes the reduction to a question
on regular embeddings possible:

THEOREM 2. Let A be a local integral domain which is a localization
of a ring of finite type over a discrete valuation ring. Then there exists a
projective map ¢: X — Spec(A) such that
e X is an integral regular scheme.
e If K is the quotient field of A, then the extension k(X) of K is finite (we
say that X is generically finite over Spec(A)).
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For the proof of this theorem we refer to [2]. We show below that this
reduces the questions on intersections over a regular local ring to corresponding
questions on intersections on projective schemes where one of the schemes is
regular. We note that the fact that ¢ is projective means that X is a closed
subscheme of Proj(A[Xy,...,X,]) for some n. In our application, we apply
the theorem to A = R/q. Suppose first that Spec(R/q) is already regular,
which means that R/q is a regular local ring. In that case, g is generated
by part of a regular system of parameters, so is in particular generated by a
regular sequence. Hence the conjectures follow immediately from the results
of the previous section on Koszul complexes.

We note that there is an extra assumption, that the ring be a localization
of a ring of finite type over a discrete valuation ring (and there are also
assumptions on the discrete valuation ring). However the general case can be
reduced to this case (see Berthelot [1] or Hochster [5]), and we assume that
our rings have this property.

Let X = Spec(R), Z = Spec(R/q) and Y = Spec(R/p). We denote a
regular scheme which is projective and generically finite over Z (whose
existence follows from de Jong’s theorem) by Z’. Then there exists an n
such that Z’' is a closed subscheme of Proj(R/q[Xo,...,X,]) and hence
also of Proj(R[Xop,...,X,]). We let P denote Proj(R[Xp,...,X,]) and let
¢ denote both the map from P to X and the induced map from Z’
to Z. Let [ denote the graded ideal of R[Xy,...,X,] which defines Z’.
Let Y/ = ¢~ 1(Y) = Proj(R/p[Xo, . .., X,]).

The generalization from rings to projective schemes involves a correspond-
ing generalization from modules to sheaves. The sheaves we consider will be
coherent (see for example Hartshorne [4] for the general theory of sheaves
on projective schemes). We recall that a coherent sheaf M on W can be
defined either by specifying its modules of sections over the open sets in an
affine open cover or, alternatively, by taking the sheaf defined by a finitely
generated graded A-module M. We will generally use the second definition,
as it is usually more convenient in computing examples.

We let Op, Oy, and Oz denote the structure sheaves of P, Y,
and Z' respectively; they are defined by the graded rings R[Xy,...,X,],
R/p[Xo, ..., X,], and R[Xy,...,X,]/I. We will also sometimes denote R by
Ox and similarly for Oy and O,.

If M and A are sheaves on a projective scheme W defined by graded
modules M and N, we define the sheaves ZorZ"(M,N) by taking a
resolution of M (or N') by locally free sheaves F;, and letting Tor,-o Y(M,N)
be the i homology of F, Q@ N . Usually we define 7, by defining a complex
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of graded modules F; which define locally free sheaves and which give a
resolution of M (or N). In the case where W = P, a bounded resolution
can be constructed using direct sums of copies of Op(n), so this process is
quite easy to carry out. We also define the complex TorOW(M,N ) to be the
complex F, ® . This complex is of course not well-defined as a complex,
but it is well-defined up to quasi-isomorphism.

The last ingredient in the generalization to projective space is the pushdown
of complexes from P to X by the map ¢, which we denote ¢,. In general
this functor is the derived functor of the global section functor on sheaves,
but in the case of projective space over R it is not difficult to give a direct
definition using Cech cohomology. Let A = R[Xy, ..., X,], and let P = Proj(A)
as above. Let C*® be the complex

0— HAXi — HAXin — e _*AXoXl-‘-X,I — 0

where for any element Y € A, Ay denotes the localization of A obtained
by inverting Y. If M, is a bounded complex of coherent sheaves over P
represented by a complex of graded modules M,, we then define ¢.(M,) to
be the graded part of degree zero of the complex C*® ®4 M,. Then ¢,.(M,)
is a bounded complex of R-modules with finitely generated homology and is
well-defined up to quasi-isomorphism.

Now suppose that M and N are coherent sheaves on P such that
M ®o, N has support which lies over the closed point of R, which we
denote s. Then 7¢ or,-o P(M,N) has support lying over s for all i, so that the
homology of qﬁ*(TorO”(M,N )) is supported at the maximal ideal and thus
has finite length. Hence we can define

XM N) =Y (1) length (H'(¢(Tor” (M, N ) .

The first part of the reduction is to show that it suffices to show
that the Euler characteristic x(Oz,Oy/) is non-negative and is zero if
dim(R/p)+dim(R/q) < dim(R). The point is that the assumptions on ¢ imply
that this new Euler characteristic is closely related to the Euler characteristic
X(R/p,R/q) defined earlier. Let G, be a finite free resolution of R/p over
R. Let F, be a finite locally free resolution of Oz as above, and let F,
be defined by a complex F, of graded modules. We then have the following
“projection formula”:

D+(Fo) @ Go = ¢4(Fo ® ¢7(Ga)) -
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To prove this formula, we use the definition of ¢, in terms of the complex
C* defined above. The associativity of the tensor product implies that we have
isomorphisms of complexes:

(C.®AF0)®RGOgC.®A(F0®RGo)gC.®A(FO®A(A®RGO))-

Since A ®z G, defines a locally free resolution of Oy, it is clear that
the complex C® @4 (Fo ®4 (A ®g G.)) represents ¢.(Fe @ $*(G,)). Since
(C* @4 Fo) @r Go represents ¢.(F)® G, , this proves the above isomorphism.

To complete the proof of the fact that it suffices to prove non-negativity
and vanishing for x(Oz,Oy:), we use induction on the dimension of R/q
together with the assumption that the map induced by ¢ from Z' to Z is
generically finite. Let F, be a locally free resolution of Oz on P. If we
localize at q, the generic finiteness of ¢ implies that the resulting map from
Proj((A/I),) to Spec((R/q)q) is defined by a finite field extension of a given
degree which we denote n. Thus ¢.(F,) localized at g is isomorphic to
((R/q)q)", so the complex ¢.(F,) is isomorphic to the module (R/q)" up
to a complex with homology of dimension strictly less than the dimension
of R/q.

By the projection formula, we have that

$+(Fo) ® Go = ¢u(Fo @ 97(Go))

where G, is a free resolution of R/p. Since F, is a locally free reso-
lution of Oz and ¢*(G,) is a locally free resolution of Oy/, the com-
plex ¢.(Fe ® ¢*(G,)) 1s quasi-isomorphic to qb*(TorOP(OZ/,OYI)). Hence,
taking Euler characteristics and using the above isomorphism, we have
X(¢0+(Fo),R/p) = x(Oz,Oy:). Applying the induction hypothesis, we have
that x(M,R/p) is zero whenever the dimension of M is less than the dimen-
sion of R/q. Thus, since ¢.(Oz) is isomorphic to (R/q)" up to something
of dimension strictly less than the dimension of R/q, we have that

X(Oz, Oyr) = x(¢+(Fo),R/p) = x(R/9)", R/p) = n(X(R/q, R/p)).

Thus the vanishing, non-negativity, and positivity of x(Oz, Oy/) are equivalent
to the corresponding properties of x(R/q,R/p).

Thus we have reduced the multiplicity conjectures to corresponding
conjectures on Euler characteristics defined by subschemes Y’ and Z' of
projective space over R, where Z' is regular and Y’ is the pullback of
a subscheme of Spec(R). In particular, the ideal [ defining Z' is locally
generated by a regular sequence, and this fact makes it possible to use the
Serre spectral sequence to reduce to the case of associated graded rings.
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Let gri(A) =A/IDI/I*>® ... be the associated graded ring of /. Let B
denote A/pA, and let gr;(B) denote the associated graded ring of the image
of I in B. We note that both gr;(A) and gr;(B) are bigraded rings, with
one grading induced by the grading on A and the other corresponding to
powers of [. The ring gr;(B) is also a bigraded module over gr;(A). We
make the convention that the i,j component of gr;(A) is the component of
F/PT! of degree i. We let E denote the scheme Proj(gri(A)), where gri(A)
is considered to be a graded module by the grading in the first component
(the grading induced from that on A). Then E can be defined locally as
follows: if U 1is an affine open set in Z' and Oy is the ring such that
U = Spec(Oy), then the fiber of E over U is defined to be Spec(C), where
C 1s the associated graded ring of Oy by the restriction of I to U. Since
I is locally generated by a regular sequence, C is locally a polynomial ring
over Oy. We note that Oz is a quotient of both A and gr;(A). Let M
denote the sheaf on E defined by the graded module gr;(B).

We next show that the Serre spectral sequence implies that we have an
equality :

xe(Oz/, M) = xp(Oz, Oy).

Let
O—-Fr—--—Fr—=>Fo—0

be a locally free resolution of Oz over Op. We apply the argument of
section 2 to the filtration of F, induced by the powers of I. Since [ is
locally generated by a regular sequence, the same argument goes through.
However, there are two points which are different from the case of the Koszul
complex. First of all, F, will in general not be a minimal complex locally, so
that it is locally a direct sum. of a Koszul complex and a trivial (split exact)
complex. However, in the local computation, the split exact part is eliminated
in the step from E° to E', so from that point the argument goes through as
before. The second point is that in taking the homology at E', the homology
is no longer of finite length, but only supported at the maximal ideal of R.
However, it is still zero except for finitely many i and n and we can conclude
that the Euler characteristic is the same using the additivity of ¢, and the
Euler characteristic on Spec(R). Thus the argument goes through, and we
have the above equality.

There is one more reduction, which reduces to the fibers over Spec(R/m) = s.
Let M be the sheaf on E with associated graded ring gr;(B) considered as a
module over gri(A). Then, since for the original ideals p and g we had that
R/p ® R/q had finite length, M is annihilated by a power of the maximal
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ideal m of R. Hence it has a finite filtration with quotients M; which are
annihilated by m. It then suffices to show that xg(Oz, M,) is non-negative
for each i. We can compute this Euler characteristic by taking a locally
free resolution for Oz and tensoring with M;, and, since M; is annihi-
lated by m, we can tensor first with R/m. Let s denote the closed point
of Spec(R) as above, let E; = Proj(gri(A) ®g k), where k = R/m, and let
Z! = Proj(A/I ®g k). The above argument shows that for each i we have
xe(Oz:, M) = xg,(Oz, M;). Hence

Xe(Oz, M) =Y xp(Oz, M) = x5Oz, My).

We recall that the dimension of M is equal to dim(R/p) + n (where
P = Proj(R[Xy,...,X,])). Thus to prove the vanishing and non-negativity
conjectures it suffices to show that whenever M is a coherent sheaf on Ej
and dim(M) +dim(Z’) < dim(R) +n we have xg (Oz, M) > 0, and that we
have equality when dim(M) + dim(Z’) < dim(R) + n.

To prove the positivity conjecture it would of course suffice to show that if
dim(M) +dim(Z') = dim(R) +n, the Euler characteristic is positive. However,
this is not true in general (we give an example below). However, assuming
the non-negativity conjecture for a moment, we show that there is a simple
criterion for positivity.

PROPOSITION 1. Let notation be as above, and let My be the sheaf
defined by gri(B) @gk considered as a module over gri(A) Qg k. Assume that
dim(R/p) + dim(R/q) = dim(R). Then the positivity conjecture holds for the
ideals p and q if and only if xg(Oz, My) > 0.

Proof. Since M, is a quotient of the sheaf M defined by gr;(B)
and Euler characteristics are non-negative, if Xg(Oz:, Mg) > 0, then
Xe(Oz, M) > 0. Conversely, suppose that X, (Oz, Mg) = 0. Since gr/(B)
is annihilated by a power of m, it has a filtration with quotients which are
homomorphic images of direct sums of copies of gr;(B) ®g k. Again using
non-negativity, we can deduce that if M; is the sheaf defined by any of these
quotients, then M, is a quotient of a direct sum of copies of M, so we

have xg,(Oz, M;) = 0. Thus the additivity of the Euler characteristic implies
that xg(Oz, M) =0. '
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