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RECENT DEVELOPMENTS
ON SERRE’S MULTIPLICITY CONJECTURES:
GABBER’S PROOF OF THE NONNEGATIVITY CONJECTURE

by Paul C. ROBERTS

These notes are based on talks given at the Encuentro de Geometria
Algebraica y Algebra Conmutativa in Guanajuato in August 1997. They
describe recent developments in the questions on intersection multiplicities,
particularly Gabber’s recent proof of Serre’s conjecture that intersection
multiplicities over regular local rings are non-negative. After an introductory
section on Serre’s conjectures, we present an outline of this proof. In addition,
we discuss related questions on Hilbert polynomials of bi-graded rings.

An outline of Gabber’s proof can be found in Berthelot [1], and a more
complete exposition of the proof is given in Hochster [5]. Both of these articles
had a strong influence on these notes.

1. THE SERRE MULTIPLICITY CONJECTURES

In [7], Serre introduced a definition of intersection multiplicity for regular
local rings and showed that it satisfied many of the properties which should
hold for intersection multiplicities. The definition is as follows: let R be a
regular local ring of dimension d, and let X = Spec(R). Let Y and Z be
closed subschemes of X defined by ideals p and g such that Y NZ consists
only of the closed point of X, or, equivalently, that R/p ® R/q is a module
of finite length. (Despite the notation, it is not necessary that p and g be
prime; however, they will usually be assumed to be prime in later sections of
the paper.) Then the intersection multiplicity of ¥ and Z is defined to be

d
X(Y,Z) = x(R/p,R/q) = Y _(~1)'length(TorR(R/p, R/q)) .
i=0
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More generally, if M and N are finitely generated R-modules such that M QN
is a module of finite length, we define

d
X(M,N) =) (—1)'length(Torf(M,N)).
i=0

One of the motivations behind this definition is that it can be shown that
Bézout’s theorem holds if multiplicities are defined in this way; that is, if ¥
and Z are closed subschemes of projective space meeting in a finite number
of points, then the number of points of intersection counted with multiplicities
1s the product of the degrees of ¥ and Z.

On the other hand, there were certain properties which are not obviously
satisfied and which were left as conjectures. In the form given by Serre [7],
the conjectures are as follows: let R be a regular local ring, and let M and
N be finitely generated R-modules such that M @z N has finite length. Then:
o dim(M) + dim(N) < dim(R).

e (Non-negativity) x(M,N) > 0.
e X(M.N)> 0 if and only if dim(M) + dim(N) = dim(R).

Another version of these conjectures is the following:

e dim(M)+ dim(N) < dim(R).
e (Vanishing) If dim(M) + dim(N) < dim(R), x(M,N) = 0.
o (Positivity) If dim(M) + dim(N) = dim(R), x(M,N) > 0.

It is easy to see that the two sets of conjectures are equivalent. Serre
proved the first statement in general, and he proved the others for regular
rings containing a field by the method of reduction to the diagonal. We will
discuss part of this method below. The question was left open for rings of
mixed characteristic, and Serre also asked whether a proof existed which did
not use reduction to the diagonal.

The vanishing conjecture was proven about ten years ago (Roberts [6],
Gillet-Soulé [3]) using K -theoretic methods. The proof in [6] uses the theory
of local Chern characters, while that in [3] uses the theory of Adams operations
on Grothendieck groups of complexes.

The main topic of these notes is the recent proof of Gabber of the non-
negativity conjecture, in the course of which he also gives a new proof of
the vanishing conjecture. In addition, we discuss some questions which arise
when attempting to extend these ideas to prove the positivity conjecture. First,
we recall a spectral sequence argument used by Serre in his proof and which
was extended by Gabber to reduce these questions on modules over regular
local rings to questions on locally free sheaves on projective space.
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2 THE SERRE SPECTRAL SEQUENCE

The main theorem of this section relates the Euler characteristic of a
Koszul complex on a module to the Samuel multiplicity of the module. Let
A be a local ring, and let M be a finitely generated A-module of dimension
at most k. Let a be an ideal of A such that M/aM has finite length. We
recall that the associated Hilbert-Samuel polynomial Pjgy(n) is defined to be
the polynomial for which

P2(n) = length(M /a"M)

for large n. If the dimension of M is at most k, we define the Samuel
multiplicity ex(a,M) to be k! times the coefficient of n* in P§(n) (f the
dimension of M is less than k, ei(a, M) will be zero).

THEOREM 1. With notation as above, let xi,...,xx be a sequence of
elements of A, and let a be the ideal generated by xi,...,xy. Assume that
M /aM is a module of finite length. Let Ko be the Koszul complex on xi,...,Xk,
and let

k
X(Ke ® M) =Y " (—1) length(H;(Ks @ M)).
i=0
Then
X(Ke @ M) = e(a, M) .

We sketch the argument used to prove this theorem. The main idea is
to examine the spectral sequence defined by the filtration on K, induced
by powers of a. For each n > 0 and for each i we consider the quotient
oa"K;/a"t'K;. For each r > 0 we then take the subquotient EJ, of this module
defined by

roo_ {kl € a'K; 1 di(k;) € a”‘*""Ki_l} + an—HKi
D i (kiy) | kit € o= P} 0 anK) + artiK

The Ej, define a spectral sequence (the usual spectral sequence associated
to a filtered complex). While the precise definition is necessarily quite
complicated, the idea is that E7, is the subquotient of a"K;/ a"tK; consisting
of elements whose boundaries lie r steps further down in the filtration modulo
boundaries of elements which lie at most r—1 steps further up in the filtration.
As r gets large, this subquotient approaches the submodule of elements whose
boundaries are zero modulo the submodule consisting of all of the boundaries.

S CRUNPE——
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In fact, it can be shown using the Artin-Rees lemma (see Serre [7]) that
the spectral sequence does in fact converge to the a-adic filtration on the
homology of K,.

Part of the general theory of spectral sequences, which can be verified
directly in this case from the above definition, is that the boundary map d;
on K, induces a map dj, from Ej, to E ,, ., for each i,n and r, and
that we have

Eir,;tl - Ker(dlr,n)/ Im( ir+1,n—r)'

Thus the modules at stage r + 1 can be computed as the homology of those
at the r™ stage under maps induced by the boundary maps of K,.

We next examine the complexes defined by Egn and E},n.

If we let » = 0 in the above definition of E[ ,» the condition that
di(k;) € a"""K;_; states that di(k;) € a"K;_;, which is always true since
k; 1s assumed to be in a"K; and d; is a module homomorphism. Similarly,
the condition that k;.; € a""!K;y; implies that di,(kiy;) € a"t'K;, so that
when r = 0 the denominator in the above definition of Ej, is just a"*'K;.
Hence Egn is simply a"K;/a"t!K;. Furthermore, since K, is the Koszul
complex on the generators of a, the maps d; are all zero modulo a, and the
maps induced by the boundary maps d; on Egn are zero. It then follows that
E}, is also equal to a"K;/a"'K;.

We next consider the maps d}’n induced by d; on E},n ; we denote this map
d;. Since K, is the Koszul complex on xi,...,xx, the map d; is defined by a
matrix with £x; in certain positions and zeros in the remaining positions. Thus
d; is defined by the same matrix in which x; is considered as a map from
o"K;/a" K, to a"tK;_1/a"T2K;_; for each n. Let K; denote the associated
graded module of K; under the filtration by powers of a. Then d; defines a
map of degree one from K; to K;_1, and the above description shows that
the resulting complex is the Koszul complex on Xi,...,X;, where X; denotes
the image of x; in the component of degree 1 of the associated graded ring
gra(4).

Thus we have shown that if for each i we let

Ei - @nZO Eil,n — @RZO anKi/an+1Ki>

the maps d},n induced by d; define a complex K, which is the Koszul complex
on Xi,...,X; over grq(A).

Up to now we have considered the filtration on K, without mentioning
the module M. However, exactly the same argument holds for K, ® M, and
we obtain a spectral sequence E;,(M) which converges to the homology of
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K. ®M and such that the modules E},n(M) form the Koszul complex induced
by Xi,...,X on the associated graded module gr,(M). This Koszul complex
can also be expressed as Ko ® grq(M). Since we are assuming that M /aM has
finite length, the homology of the Koszul complex induced by Xi,...,X; on
grq(M) also has finite length. Thus, since stage r+ 1 of the spectral sequence
is obtained from the r stage by taking homology, the Euler characteristic 1s
preserved from each stage of the spectral sequence to the next. Hence, since
the spectral sequence converges to the homology of K, @ M, we have

X(Ke ®a M) = X(Eo R gra(A) gra(M)) .

To complete the proof that this Euler characteristic is equal to the Samuel
multiplicity, we interpret the complex Ko Qgr,4) 97a(M) as a complex of
graded modules. Denote this complex kY. Each module I?IM has a Hilbert
polynomial P; such that

n—1

Pin) =Y length(K}");,
j=0

_ _ , : =M
where (KZM)]- denotes the component of wa of degree j. However, since K,
is a Koszul complex on the associated graded module of M, we also have

k
Pi(n) = <i>P§4(n — 1)

for all i, where Pj, is the Hilbert polynomial of M. The shift by i in I—{_].W
is necessary so that the boundary maps will be maps of graded modules of
degree zero. By the additivity of Hilbert polynomials, ZLO(—I)"Pi(n) gives
the Hilbert polynomial defined by the homology of I?],M, which is constant
with value y (K I.VI). But a direct computation (we prove a more general version
of this in a later section) shows that >t (—1) ()P (n — i) is k! times the
coefficient of n* in Pg(n), which proves the result.

The point of this computation is that it transforms questions about Euler
characteristics into questions about Hilbert polynomials, which are often easier
to deal with. We consider one particularly important case. Let R be a regular
local ring, and let p and ¢ be ideals of R such that R/p ® R/q has
finite length. Suppose q is generated by a regular sequence xi,...,x;. Then
dim(R/q) = dim(R) — k, so that we have dim(R/p) < dim(R) — dim(R/q) = k,
and dim(R/p) + dim(R/q) = dim(R) if and only if dim(R/p) = k. Since
X1,...,X 18 a regular sequence, the Koszul complex K, on xi,...,x; is a
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free resolution of R/q. Thus Tor®(R/q,R/p) is the homology H;(K. ® R/p).
Applying the above theorem with M = R/p, we deduce that

X(R/q,R/p) = ex(q, R/P).

Since the Samuel multiplicity e;(q, R/p) is always non-negative and is positive
if and only if the dimension of R/p is equal to k, this proves the conjectures
in this case.

Serre’s proof of the multiplicity conjectures in the equicharacteristic case
proceeded by reducing to the case of a regular sequence by reduction to
the diagonal. If R is a power series ring k[[X;,...,Xy]] and M and N
are R-modules with M @z N of finite length, he introduced a new set of
variables Yp,...,Y,; and considered N as a module over k[[Yy,...,Y,]]. He
then defined a “complete” tensor product M ®; N over k as a module over
the ring k[[X1,...,Xy, Y1,...,Yy]] and showed that

k[X ¥j]]

Tor; (M, N) = T (M & N, K[[X;, Y11/ = Yy, .. Xa — Ya)).

Since X; —Yi,...,X; — Y, form a regular sequence, this proves the result
for power series rings, and the conjectures for general equicharacteristic rings
can be reduced to this case by completion and the Cohen structure theorems.

3. GABBER’S REDUCTION TO REGULAR EMBEDDINGS

In this section we describe Gabber’s use of de Jong’s theorem on the
existence of “regular alterations” to reduce the intersection conjectures to
questions on regular embeddings in projective space over R.

As above, let R be a regular local ring and let p and g be prime ideals
of R such that R/p ® R/q has finite length. Let d be the dimension of R,
let » be the dimension of R/p and let 7 be the dimension of R/q.

The following theorem of de Jong [2] makes the reduction to a question
on regular embeddings possible:

THEOREM 2. Let A be a local integral domain which is a localization
of a ring of finite type over a discrete valuation ring. Then there exists a
projective map ¢: X — Spec(A) such that
e X is an integral regular scheme.
e If K is the quotient field of A, then the extension k(X) of K is finite (we
say that X is generically finite over Spec(A)).
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For the proof of this theorem we refer to [2]. We show below that this
reduces the questions on intersections over a regular local ring to corresponding
questions on intersections on projective schemes where one of the schemes is
regular. We note that the fact that ¢ is projective means that X is a closed
subscheme of Proj(A[Xy,...,X,]) for some n. In our application, we apply
the theorem to A = R/q. Suppose first that Spec(R/q) is already regular,
which means that R/q is a regular local ring. In that case, g is generated
by part of a regular system of parameters, so is in particular generated by a
regular sequence. Hence the conjectures follow immediately from the results
of the previous section on Koszul complexes.

We note that there is an extra assumption, that the ring be a localization
of a ring of finite type over a discrete valuation ring (and there are also
assumptions on the discrete valuation ring). However the general case can be
reduced to this case (see Berthelot [1] or Hochster [5]), and we assume that
our rings have this property.

Let X = Spec(R), Z = Spec(R/q) and Y = Spec(R/p). We denote a
regular scheme which is projective and generically finite over Z (whose
existence follows from de Jong’s theorem) by Z’. Then there exists an n
such that Z’' is a closed subscheme of Proj(R/q[Xo,...,X,]) and hence
also of Proj(R[Xop,...,X,]). We let P denote Proj(R[Xp,...,X,]) and let
¢ denote both the map from P to X and the induced map from Z’
to Z. Let [ denote the graded ideal of R[Xy,...,X,] which defines Z’.
Let Y/ = ¢~ 1(Y) = Proj(R/p[Xo, . .., X,]).

The generalization from rings to projective schemes involves a correspond-
ing generalization from modules to sheaves. The sheaves we consider will be
coherent (see for example Hartshorne [4] for the general theory of sheaves
on projective schemes). We recall that a coherent sheaf M on W can be
defined either by specifying its modules of sections over the open sets in an
affine open cover or, alternatively, by taking the sheaf defined by a finitely
generated graded A-module M. We will generally use the second definition,
as it is usually more convenient in computing examples.

We let Op, Oy, and Oz denote the structure sheaves of P, Y,
and Z' respectively; they are defined by the graded rings R[Xy,...,X,],
R/p[Xo, ..., X,], and R[Xy,...,X,]/I. We will also sometimes denote R by
Ox and similarly for Oy and O,.

If M and A are sheaves on a projective scheme W defined by graded
modules M and N, we define the sheaves ZorZ"(M,N) by taking a
resolution of M (or N') by locally free sheaves F;, and letting Tor,-o Y(M,N)
be the i homology of F, Q@ N . Usually we define 7, by defining a complex
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of graded modules F; which define locally free sheaves and which give a
resolution of M (or N). In the case where W = P, a bounded resolution
can be constructed using direct sums of copies of Op(n), so this process is
quite easy to carry out. We also define the complex TorOW(M,N ) to be the
complex F, ® . This complex is of course not well-defined as a complex,
but it is well-defined up to quasi-isomorphism.

The last ingredient in the generalization to projective space is the pushdown
of complexes from P to X by the map ¢, which we denote ¢,. In general
this functor is the derived functor of the global section functor on sheaves,
but in the case of projective space over R it is not difficult to give a direct
definition using Cech cohomology. Let A = R[Xy, ..., X,], and let P = Proj(A)
as above. Let C*® be the complex

0— HAXi — HAXin — e _*AXoXl-‘-X,I — 0

where for any element Y € A, Ay denotes the localization of A obtained
by inverting Y. If M, is a bounded complex of coherent sheaves over P
represented by a complex of graded modules M,, we then define ¢.(M,) to
be the graded part of degree zero of the complex C*® ®4 M,. Then ¢,.(M,)
is a bounded complex of R-modules with finitely generated homology and is
well-defined up to quasi-isomorphism.

Now suppose that M and N are coherent sheaves on P such that
M ®o, N has support which lies over the closed point of R, which we
denote s. Then 7¢ or,-o P(M,N) has support lying over s for all i, so that the
homology of qﬁ*(TorO”(M,N )) is supported at the maximal ideal and thus
has finite length. Hence we can define

XM N) =Y (1) length (H'(¢(Tor” (M, N ) .

The first part of the reduction is to show that it suffices to show
that the Euler characteristic x(Oz,Oy/) is non-negative and is zero if
dim(R/p)+dim(R/q) < dim(R). The point is that the assumptions on ¢ imply
that this new Euler characteristic is closely related to the Euler characteristic
X(R/p,R/q) defined earlier. Let G, be a finite free resolution of R/p over
R. Let F, be a finite locally free resolution of Oz as above, and let F,
be defined by a complex F, of graded modules. We then have the following
“projection formula”:

D+(Fo) @ Go = ¢4(Fo ® ¢7(Ga)) -
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To prove this formula, we use the definition of ¢, in terms of the complex
C* defined above. The associativity of the tensor product implies that we have
isomorphisms of complexes:

(C.®AF0)®RGOgC.®A(F0®RGo)gC.®A(FO®A(A®RGO))-

Since A ®z G, defines a locally free resolution of Oy, it is clear that
the complex C® @4 (Fo ®4 (A ®g G.)) represents ¢.(Fe @ $*(G,)). Since
(C* @4 Fo) @r Go represents ¢.(F)® G, , this proves the above isomorphism.

To complete the proof of the fact that it suffices to prove non-negativity
and vanishing for x(Oz,Oy:), we use induction on the dimension of R/q
together with the assumption that the map induced by ¢ from Z' to Z is
generically finite. Let F, be a locally free resolution of Oz on P. If we
localize at q, the generic finiteness of ¢ implies that the resulting map from
Proj((A/I),) to Spec((R/q)q) is defined by a finite field extension of a given
degree which we denote n. Thus ¢.(F,) localized at g is isomorphic to
((R/q)q)", so the complex ¢.(F,) is isomorphic to the module (R/q)" up
to a complex with homology of dimension strictly less than the dimension
of R/q.

By the projection formula, we have that

$+(Fo) ® Go = ¢u(Fo @ 97(Go))

where G, is a free resolution of R/p. Since F, is a locally free reso-
lution of Oz and ¢*(G,) is a locally free resolution of Oy/, the com-
plex ¢.(Fe ® ¢*(G,)) 1s quasi-isomorphic to qb*(TorOP(OZ/,OYI)). Hence,
taking Euler characteristics and using the above isomorphism, we have
X(¢0+(Fo),R/p) = x(Oz,Oy:). Applying the induction hypothesis, we have
that x(M,R/p) is zero whenever the dimension of M is less than the dimen-
sion of R/q. Thus, since ¢.(Oz) is isomorphic to (R/q)" up to something
of dimension strictly less than the dimension of R/q, we have that

X(Oz, Oyr) = x(¢+(Fo),R/p) = x(R/9)", R/p) = n(X(R/q, R/p)).

Thus the vanishing, non-negativity, and positivity of x(Oz, Oy/) are equivalent
to the corresponding properties of x(R/q,R/p).

Thus we have reduced the multiplicity conjectures to corresponding
conjectures on Euler characteristics defined by subschemes Y’ and Z' of
projective space over R, where Z' is regular and Y’ is the pullback of
a subscheme of Spec(R). In particular, the ideal [ defining Z' is locally
generated by a regular sequence, and this fact makes it possible to use the
Serre spectral sequence to reduce to the case of associated graded rings.
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Let gri(A) =A/IDI/I*>® ... be the associated graded ring of /. Let B
denote A/pA, and let gr;(B) denote the associated graded ring of the image
of I in B. We note that both gr;(A) and gr;(B) are bigraded rings, with
one grading induced by the grading on A and the other corresponding to
powers of [. The ring gr;(B) is also a bigraded module over gr;(A). We
make the convention that the i,j component of gr;(A) is the component of
F/PT! of degree i. We let E denote the scheme Proj(gri(A)), where gri(A)
is considered to be a graded module by the grading in the first component
(the grading induced from that on A). Then E can be defined locally as
follows: if U 1is an affine open set in Z' and Oy is the ring such that
U = Spec(Oy), then the fiber of E over U is defined to be Spec(C), where
C 1s the associated graded ring of Oy by the restriction of I to U. Since
I is locally generated by a regular sequence, C is locally a polynomial ring
over Oy. We note that Oz is a quotient of both A and gr;(A). Let M
denote the sheaf on E defined by the graded module gr;(B).

We next show that the Serre spectral sequence implies that we have an
equality :

xe(Oz/, M) = xp(Oz, Oy).

Let
O—-Fr—--—Fr—=>Fo—0

be a locally free resolution of Oz over Op. We apply the argument of
section 2 to the filtration of F, induced by the powers of I. Since [ is
locally generated by a regular sequence, the same argument goes through.
However, there are two points which are different from the case of the Koszul
complex. First of all, F, will in general not be a minimal complex locally, so
that it is locally a direct sum. of a Koszul complex and a trivial (split exact)
complex. However, in the local computation, the split exact part is eliminated
in the step from E° to E', so from that point the argument goes through as
before. The second point is that in taking the homology at E', the homology
is no longer of finite length, but only supported at the maximal ideal of R.
However, it is still zero except for finitely many i and n and we can conclude
that the Euler characteristic is the same using the additivity of ¢, and the
Euler characteristic on Spec(R). Thus the argument goes through, and we
have the above equality.

There is one more reduction, which reduces to the fibers over Spec(R/m) = s.
Let M be the sheaf on E with associated graded ring gr;(B) considered as a
module over gri(A). Then, since for the original ideals p and g we had that
R/p ® R/q had finite length, M is annihilated by a power of the maximal
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ideal m of R. Hence it has a finite filtration with quotients M; which are
annihilated by m. It then suffices to show that xg(Oz, M,) is non-negative
for each i. We can compute this Euler characteristic by taking a locally
free resolution for Oz and tensoring with M;, and, since M; is annihi-
lated by m, we can tensor first with R/m. Let s denote the closed point
of Spec(R) as above, let E; = Proj(gri(A) ®g k), where k = R/m, and let
Z! = Proj(A/I ®g k). The above argument shows that for each i we have
xe(Oz:, M) = xg,(Oz, M;). Hence

Xe(Oz, M) =Y xp(Oz, M) = x5Oz, My).

We recall that the dimension of M is equal to dim(R/p) + n (where
P = Proj(R[Xy,...,X,])). Thus to prove the vanishing and non-negativity
conjectures it suffices to show that whenever M is a coherent sheaf on Ej
and dim(M) +dim(Z’) < dim(R) +n we have xg (Oz, M) > 0, and that we
have equality when dim(M) + dim(Z’) < dim(R) + n.

To prove the positivity conjecture it would of course suffice to show that if
dim(M) +dim(Z') = dim(R) +n, the Euler characteristic is positive. However,
this is not true in general (we give an example below). However, assuming
the non-negativity conjecture for a moment, we show that there is a simple
criterion for positivity.

PROPOSITION 1. Let notation be as above, and let My be the sheaf
defined by gri(B) @gk considered as a module over gri(A) Qg k. Assume that
dim(R/p) + dim(R/q) = dim(R). Then the positivity conjecture holds for the
ideals p and q if and only if xg(Oz, My) > 0.

Proof. Since M, is a quotient of the sheaf M defined by gr;(B)
and Euler characteristics are non-negative, if Xg(Oz:, Mg) > 0, then
Xe(Oz, M) > 0. Conversely, suppose that X, (Oz, Mg) = 0. Since gr/(B)
is annihilated by a power of m, it has a filtration with quotients which are
homomorphic images of direct sums of copies of gr;(B) ®g k. Again using
non-negativity, we can deduce that if M; is the sheaf defined by any of these
quotients, then M, is a quotient of a direct sum of copies of M, so we

have xg,(Oz, M;) = 0. Thus the additivity of the Euler characteristic implies
that xg(Oz, M) =0. '
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4. SOME EXAMPLES

We give here three simple examples of the type of bigraded ring which
might result from this construction. Each of these examples is obtained by
taking a birational map from a regular scheme to Spec(R/q), and the last two
are simple resolutions of singularities.

We first summarize the construction up to this point. We began with a
regular local ring R and prime ideals p and ¢q. We then took a regular
subscheme Z' of Proj(R[Xp,...,X,]) which was generically finite over
Spec(R/q). The next step was to replace R[Xp,...,X,] with the associated
graded ring of I tensored with R/m = k. The sheaf Oy defined by
B =R/p[Xy,...,X,] was then replaced with the sheaf M defined by gr;(B),
again tensored with k. The assumption of regularity implies that I/I? is locally
free over A/I; denote its rank r. Then the dimension of M is at most r,
and it is equal to r if and only if we had dim(R/p) + dim(R/q) = dim(R).
We note that the fiber Z of Z' over the maximal ideal of R has dimension
at most dim(R/q) — 1, but apart from that we do not know much about it. It
is the projective scheme defined by the graded ring (A/I) ®g k, which is the
part of degree zero in the grading in the second component of the bigraded
ring we are considering.

For the first example, let R have dimension four, let ¢, u, v, w be a regular
system of parameters, and define the prime ideals p and g by letting p = (¢, u)
and g = (v, w). In this case, Spec(R/q) is already regular, and we can simply
take the projective scheme Proj(R[X]) = Spec(R).

For a slightly more complicated example, consider the subscheme of the
projective space Proj(R[X, Y]) defined by the ideal I generated by v, w, and
Xu —Yt. Then Z’ is the blow up of R/q at the point defined by the maximal
ideal, and the fiber over s is projective space of dimension 1. One could
define similar examples in higher dimension.

For a third example, let R have dimension 2, and let / be generated by
Xu — Yt,Zu — Xt,X* — YZ. The projective space P has dimension 2, and the
fiber over the maximal ideal has codimension one in Proj(k[X, Y, Z]) and thus
has dimension one. The sheaf defined by //I? has rank 2, but I is minimally
generated by three elements.

In the above examples it was not really necessary to reduce to projective
space since the original quotients R/q were regular. We next consider an
example where the original scheme is not regular. Let m be minimally

generated by #,u, and let q be the principal ideal generated by % — 1.



SERRE’S MULTIPLICITY CONJECTURES 317

We can resolve the singularity by letting Z’ be defined by the ideal in
R[X,Y] generated by 2 —u>, uX —tY, X* —uY?. The fiber Z in this case
is Proj(k[X, Y1/(X?)).

Finally, we consider the case where q is the determinantal ideal in R of
dimension 4 generated by wu — 2, wv — tu, and v — u?. In this case the
resolution can be found by taking the ideal I in R[X,Y,Z, W] generated by
the following elements:

72— YW,YZ — XW,Y* — XZ,uW — vZ,uZ — v¥,u¥ —vX,u* — tv,
tW—vY,tZ—vX,tY—uX,tu—wv,t2—wu,wW—vX,wZ—uX,wY—tX.

The fiber over the maximal ideal is a determinantal subvariety of dimen-
sion 1.

In a later section we will return to these examples and consider the question
of computing the Euler characteristics xg (Oz, M) for sheaves M defined
as above by certain prime ideals p of R.

5. HILBERT POLYNOMIALS OF BIGRADED MODULES

In section 2 we showed how the Serre spectral sequence can be used to
express the Euler characteristic defined by a Koszul complex in terms of the
Samuel multiplicity. In this section we show that similar results hold in the
present situation. We now let C denote the bigraded ring which we previously
denoted gri(A) ®g k, where C;; consists of the elements of (F/Ft!)® k of
degree i. Thus in our present notation, E; = Proj(C), where the grading on
C is that in the first coordinate. Let Cy denote the subring @i(Ci,o). Let r
be the rank of 7/I%, and let M be a bigraded module defining a sheaf M
on E,; of dimension at most r; we define the dimension of M to be the
dimension of the associated sheaf. We consider the question of computing the
Euler characteristic xg,(Oz/, M), which we also denote x(Co, M).

Let

O—F,—- - —F —-Fy—Cy— 0

be a complex of bigraded modules which defines a locally free resolution of
Co over C. For any finitely generated bigraded module N, we let Py(m,n)
by the Hilbert polynomial of N; more precisely, we define Py to be the
polynomial in two variables such that

n—1

Px(m,n) = " length(N,,)
i=0
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for large m and n. The degree of Py is equal to the dimension of N (that
is, the dimension of the sheaf defined by N on E;). Let M be a bigraded
module of dimension at most r as above. Then M ® F; has dimension at
most r, and we have that the alternating sum of Pygpr, is constant with value
equal to x(Cy,M).

We will prove this in a special case below (and reduce the non-negativity
conjecture to this special case in the next section). We first briefly consider
the question of constructing a resolution F, of Cp. One method is to take
the E! term of the Serre spectral sequence as defined in the previous section,
starting from a locally free resolution of A/I over A. However, even though
A/I has a nice resolution by sums of shifts of A, the resulting locally free
sheaves in the resolution over the associated graded ring will not be so simple.
An alternative approach is to take a global Kozsul complex

o NI @ gri(A) — AN ® gri(A) — gri(A) — AJT — 0.

The resolution over C can then be obtained in either of these constructions by
tensoring with k. This resolution gives an expression for the Euler characteristic
in terms of the Chern classes of I/I%, but again it is not easy to see how to
use this information to compute Euler characteristics.

For the remainder of this section we assume that I/I°®gk is a sum of copies
of Oz;(—ki) for various k;, so that C is a polynomial ring Co[Ty,...,T,] over
Co, where T; has degree (k;, 1) in the bigrading on C. As mentioned above,
the non-negativity conjecture will be reduced to this situation in the next

section. In this case the resolution is the usual Koszul complex on T7,...,T,,
and the Hilbert polynomial of M ® F; is a sum of Hilbert polynomials of
M with shifts in the degrees. Furthermore, the Koszul complex on Ti,..., T,

is a tensor product of Koszul complexes on the individual 7;, and we can
compute the Hilbert polynomial of the tensor product K¢(71,...,7,) ® M by
tensoring by each factor Ko(7;) in turn and keeping track of the result. As
above, assume that the dimension of M is at most r, and let Q),(m,n) be the
component of Py (m,n) of degree r. Let T; have degree (k, 1), and consider
the Hilbert polynomial obtained by tensoring with the complex

0 — Cl(—k,—~1D)] 25 C = 0.

The Hilbert polynomial of the resulting complex Ko(7;) ® M will be given
by the polynomial whose value at (m,n) i1s Py(m,n) — Py(m —k,n—1). We
compute this difference for a monomial m'n/ and obtain

mn! — (m—k)'(n— 1) =mn! — (m' — ikm=' + ../ — 7 4 )

. 0 o et s a g fidd el ot g
= m'n/ — m'n/ + ikm" 0/ + jm'n/ ™ + o =ik 0 e
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where the remaining terms have lower degree. Since we are concerned with
the component of highest degree, this suffices for our computation. We note
that we can express this result by the formula
Ot = 00" | 9
KeTH&M = pp om
Iterating this process, where we let T; have degree (k;, 1) for each i, we

have _
. 0 .
X(Co. M) =[] <% + ki'a_m> Op -

=

In this formula Q}, could be replaced with P .

THEOREM 3. Let C = Co[Ty,...,T,], where T; has degree (k;,1) as
above, and let M be a bigraded C-module of dimension at most r.

(i) If dim(M) < r, then x(Co,M) =0.
(i1) If k; > O for all i, then x(Co,M) > 0.
(iii) If ki = 0 for all i, then x(Cy,M) > 0 if and only if the coefficient of n’
in Py is non-zero.
(iv) If k; > 0 for all i and dim(M) = r, then x(Co,M) > 0.

Proof. If the dimension of M is less than r, its Hilbert polynomial has
degree less that r, so the result of taking r partial derivatives is zero. Thus
(1) holds.

We prove (ii) and (iv) by induction on r. By taking a filtration of M, we
may assume that M is of the form (C/p)[(i,/)], where p is a bigraded prime
ideal of C and [(i,j)] denotes a shift in degrees. Suppose some 7; is not
in p. Then T; is a non-zero divisor on M, and we can tensor with the Koszul
complex on T;, replacing M with M/T;M and reducing r by one. Thus the
result follows by induction. If all 7; are in p, then its Hilbert polynomial is
constant with respect to n, so we have Q"(m,n) = am” for some o > 0.
Hence the above formula states that

x(Co, M) = kiky -+ - k. (re.

If all the k; are greater than or equal to zero, we thus have x(Cy, M) > 0.
If all the k; are greater than zero and M has dimension 7, then o > 0 and
X(Co, M) > 0. This proves (ii) and (iv).

If all the k; are zero, then x(Cp, M) is simply the r™ derivative of P, so
it is positive if and only if the coefficient of »n” is positive. On the other hand,
this coefficient gives the length of the module @~ M,, ; for sufficiently large
n up to terms of lower degree in n, so it cannot be negative.
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The graded ring obtained from the original situation will be of the form
considered here when I is globally defined by a regular sequence, and the
k; will then be the degrees of the generators. We give an example to show
that the condition that M has dimension r does not suffice for x(Cy, M) to
be positive. Let R have dimension 3 and let #,u,v be a regular system of
parameters. Let g be the ideal generated by v, and let I be the ideal of R[X, Y]
generated by v and uX —1tY. Then the fiber over the closed point is projective
space of dimension one, Cy = k[X,Y], and C = Cy[T;,T>] with k; =0 and
ky = 1. Then if M = C/T,, M has dimension 2 and x(Co, M) = 0.

EXERCISE. Prove (without using the Serre positivity conjecture) that the
module M in the previous paragraph could not arise from a prime ideal P
such that R/p ® R/q has finite length and dim(R/p) + dim(R/q) = dim(R).

6. GABBER’S PROOF OF NON-NEGATIVITY

In this section we complete Gabber’s proof of the non-negativity of
intersection multiplicities. We have seen in the last section that if gr;(A) ®g k
is a polynomial ring over (A/I) ®g k generated by elements of non-
negative degree, then non-negativity follows. We show here that we can
embed gr;(A) ®g k into a polynomial ring of this type. Let Ay denote
A/I®gk. Actually, we show instead that we can embed the symmetric algebra
Sym, (( /I*) ®g k) into a polynomial ring by a locally flat map. Since I/I?
is locally free, the map from the symmetric algebra to the associated graded
algebra defines an isomorphism of schemes, so this suffices to prove the result.
Let S = Sym, ((I/I?) ®g k). ’

Let E; denote Proj(gri(A) ®g k) = Proj(Symy, (( /[2) ®pr k)) as above.
Let W = Proj(Ao[T4,...,T]) for T; of degree (k;,1) for some integer r’.
Suppose that f is a map from S into the polynomial ring Ag[T1,...,7T,] such
that the map ¢ induced by f from W to E; is flat of relative dimension
¥ —r, where r is the rank of I/I>. Then we have a commutative diagram

S — 2 ATy,.... Ty

N /
A
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which induces a commutative diagram of schemes

Es<——¢—W

NS
Z
Let M be a sheaf on E, defined by a bigraded module M. Since we are
assuming that ¢ is flat, we have an isomorphism

Tori *(Oz;, M) = Tor?*(Oz, ¢*(M))
for all i. Thus we have an equality of Euler characteristics

X, Oz, M) = xw(Oz:, (M) .

Thus if we can find such a map f such that all the k; are non-negative, the
conjecture will follow. We now show that such an embedding exists. Gabber’s
proof uses the fact that the dual of I/I? over s is generated by global sections;
we define this map directly without dualizing. At this point we assume that R
is ramified. Although this is an unusual assumption, it is possible to reduce
to the ramified case by a finite flat extension of R, for example by adjoining
a square root of p, where R has mixed characteristic p. Let #1,...,f; be a
minimal set of generators of the maximal ideal m of R. Since R is ramified,
R/m? is isomorphic to a polynomial ring in ¢i,...,%; modulo the square
of the ideal generated by #;,...,7;. Thus for each i, the partial derivative

0
o defines a map from R/m?[Xy,...,X,] to R/m[Xy,...,X,]. By taking

the composition with the map from I to R/mz[XO, ...,X,] induced by the
inclusion of / into A and with the map from R/m[Xy,...,X,] = A Qg k to
(A/I)®r k = Ay, we obtain a map from I to Ag. Since for all ¢ in A and i
in A the partial derivatives satisfy

O(ai) _ 0i . Oa

ot; n a(‘?_t,f T l@ti

and Ao is annihilated by I, we can deduce that the map induced by Bﬁ
L

vanishes on /> and defines a homomorphism of A/I-modules from I /1I?
to Ap.

Similarly, for each i = 0,...,n we have a map induced by % from I/I*
to Ag[—1], where the shift in degree arises from the fact that tlhese partial

derivatives lower the degree by 1.
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Putting these together, we have a map from 1/I? to AJ®A¢[—1]1""!, which
define a map f from S to Ag[T4,...,T4,S0,-..,S,] where the T; have degree
0 and the S; have degree 1.

THEOREM 4. The map ¢ is locally an inclusion of polynomial rings. In
particular, it is locally flat of relative dimension d +n+1—r.

Proof. This is one of the main points of the proof, and it is the only
place where the full strength of the assumption that Z’ is regular is used. It
suffices to show that for every closed point p of Z!, the map from I/I* to
AZ@Ao[—1]""! defines a split inclusion locally at the point p. We assume that
the residue field 1s algebraically closed (which we can do by a flat extension)
and look at the maximal ideal m, corresponding to p. The local ring at p

in P, which we denote A,, is isomorphic to Rluy,... , Un]m, » Where, after a
change of coordinates, we may assume that uy,...,u, together with a set of
generators of my generate m,. Since Z’ is regular, I is generated locally by
part of a regular system of parameters ii,...,i,. Furthermore, the quotient
I/I? is locally generated by the images of ij,...,i.. Since if,...,i, form

part of a regular system of parameters, the images of their partial derivatives
in (A,/m,)* & (A,/m,)""! are linearly independent. Hence the map from
(I/I>)®k to Ag ® Ag[—1]""! locally defines a split inclusion at p as was to
be shown.

This completes the proof of the Serre nonnegativity conjecture. Since
certain of the indeterminates in the polynomial ring used in the proof have
degree zero, it does not show that the Euler characteristics must be positive.
In fact, as we showed at the end of the previous section, the locally free
sheaf defined by I/I? is not itself positive enough to ensure positivity. Thus
the positivity conjecture requires studying the sheaf M coming from the
associated graded ring of I on R/p[Xy,...,X,].

We note that we can embed A[—1] into A"*! by a locally split embedding
which sends 1 to (Xp,...,X,) and thus embed S into a polynomial ring
D generated by d + (n + 1)*> elements all of which have degree zero.
Thus one criterion for the positivity conjecture to hold is that if we
take the quotient of D by the image in D of the kernel of the map
from gr;(A) to gri(R/p[Xo,...,X,]), then (under the usual assumptions) the

coefficient of né+t®+D° in the Hilbert polynomial of this quotient is not
Zero.
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We remark that the construction we have presented is quite computa-
tional in the sense that it is possible to compute the embedding ¢ ex-
plicitly in special cases. We give two simple examples. First, let R have
dimension 2 with maximal ideal generated by t,u, let A = R[X,Y],
and let I be generated by uX — r¥Y. Then Ay = k[X,Y]. The map f
to Ag[Si,S>, Ty, T1] induced by the partial derivatives sends uX — 1Y to
—YS, + XS, + uTy — T, which, after dividing by m, is —YS; + XS,. Let
p = (t.u). Then uX — Y is zero modulo p, so the kernel on the map of
graded rings is generated by the image of uX — Y in I/I>. Hence M is
mapped to the sheaf associated to Ag[S;,S2, To. T1]1/(—YS; + XS,). It can
be verified that this quotient satisfies the condition on Hilbert polynomials;
the positivity condition also follows from the fact that —YS; + XS, has
degree (1,1).

Finally, we consider the example from section 3 in which 7 is generated
by # —u?,uX — tY,X?> — uY?. Then I/I*> has rank 2. Taking derivatives,
we see that the map ¢ (after dividing by m) satisfies &> — u?) = 0,
dwX — 1Y) = XS; — TSy, and ¢(X? — u¥Y?) = —Y2S, + 2XT,. To compute
the result of intersecting with Y’, where Y’ is generated by an ideal p,
it suffices to compute the kernel of the map from the symmetric alge-
bra on I/I* to the associated graded ring of I on R/p[X,Y] tensored
with k, and then find the image of this kernel in Ag[S;,S2,7o,7;]. On
the other hand, in this case Proj(A¢) = Proj(k[X, Y]/(X?)) has dimension
zero, so that the locally free sheaf defined by (I/I?) ®g k is actually posi-
tive.

Similar examples can be computed from the other examples in section 3.
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