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that the folds will enclose larger and larger domains. Their areas, however,
stay bounded since I" is an invariant curve on the cylinder. Therefore those
additional areas must tend to zero. But this can only happen if I" has a point
of self-intersection, which contradicts its embeddedness.

I would like to thank Patrice Le Calvez for drawing my attention to the fact
that Birkhoff’s Theorem is not true without the area-preserving assumption,
as well as Martin Beibel (from the Institute for Mathematical Stochastics,
University of Freiburg) for reading and commenting on a preliminary version.
This proof was presented in one of those evening sessions during the Dynamical
Systems meeting in Oberwolfach (1997), and I thank everyone in the audience
for attending.

2. BIRKHOFF’S THEOREM

We consider a C!-diffeomorphism ¢: S! x R — S' x R of the two-
dimensional cylinder; for the sake of simplicity, we keep the same notation
for a lift of ¢ to R? with coordinates x.y.

DEFINITION. We say that ¢ is a monotone twist mapping if the following
three conditions hold:
o o0%(dx Ndy) =dx Ndy, i.e. ¢ preserves area and orientation.
e moo(x,y) — Foo as y — *o0, i.e. ¢ preserves the ends of the cylinder.

o |O(meo0@)/0y] > 6§ > 0, ie. ¢ satisfies a uniform monotone twist
condition.

According to the sign of d(m, o ¢)/dy, we call ¢ a positive, respectively
negative, monotone twist mapping.

The uniformity of the twist condition has the following geometric interpre-
tation (“cone condition™). Let ¢ be a positive monotone twist map, and denote
by v, the vertical {x} X R. Then the image ¢(v,) crosses the vertical through
¢(x,y) in positive direction and stays outside a cone around it with centre
¢(x,y), whose angle depends only on the twist constant §: see Figure 3.

Note that if ¢ is a positive monotone twist mapping then its inverse O
1s a negative monotone twist mapping.

For the statement of the theorem, recall that a closed continuous curve is

embedded if it is homeomorphic to S'; in particular, it cannot have a point
of self-intersection.
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FIGURE 3

The “cone condition”

THEOREM (Birkhoff). Let ¢ be a monotone twist mapping on S' x R,
and T a closed, embedded, homotopically nontrivial curve in S' x R such
that o(I') =T

Then T is the graph of a Lipschitz continuous function on S'. Moreover,
the Lipschitz constant can be bounded in terms of the twist constant 6.

The proof of Birkhoff’s Theorem will take up the rest of this section.

We assume that the monotone twist map ¢ possesses an embedded invariant
curve I" which is not a graph. From this we will conclude that I" has a point

of self-intersection, which contradicts the assumptions. The Lipschitz property
will be proved at the very end.

I. SET-UP

We lift everything to R? and keep the same notation. Fix a parametrization
v: R — R? of T such that (¢t + 1) = v(t) + (1,0). This equips I' with an
order inherited from R, and we can say whether a point on I' comes before

or after another one. That I is not a graph means that the continuous function
f=movy: R— R is not injective.

LEMMA 1. We have one of the following two cases (or both) :
o There are d < e such that f(d) = f(e) and f(t) > f(d) for all t € (d,e),

e f is constant on some nontrivial interval.
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Proof. Since f is not injective there are a < b with f(a) =f(b) = h.If f
is not constant on [a, b] then m = ming, 5 f < A or M = max(g, f > h.In the
first case, we set d = max{t < a |f({) =m} and e =min{r > a | f(t) = m};
then f(d) = f(e) = m and f(r) > m for t € (d,e). In the second case,
we put ¢ = min{sr > a | f({) = M} and set d = max{r < ¢ | f(t) = h}
and e = min{r > ¢ | f(t) = h}; then f(d) = f(e) = h and f() > h for
t € (d,e). Note that all numbers are well-defined because f is continuous and
f(t) — +oo as t — +oo. [l

II. THE FIRST CASE

Let us deal with the first case from Lemma 1, and denote by v, the vertical
{x} x R. By construction, the points Dy = v(d) and Eq = ~y(e) = (xo, yo) lie
on the same vertical v,,. Moreover, the part of I" between Dy and Ej, together
with the part of the vertical v,, between Ey and Dj, forms an embedded
simply closed curve. By the Jordan-Schoenflies Theorem, this curve bounds
a domain in R? which we call Q.

There are two alternatives: either Dy lies above Ey on wy,, L.e.
my(Do) > my(Ep), or below. In the first case, we choose ¢ or ¢~! in such
a way that we obtain a positive monotone twist map; the second alternative
requires a negative twist map. Without loss of generality, we assume that Dy
lies above Ey and ¢ is a positive monotone twist mapping.

We set x; = m(¢(Ep)) and consider the intersection points of qﬁ‘“l(u\.l)
and I'; Ey 1s one of them. Let Ay be the first intersection point of qb_l('u_\.])
and I' before Dy (with respect to the order on I'). See Figure 4 by way of
illustration.

LEMMA 2. The point Agy is well-defined.

Proof. The curve y — ¢~ !(x;,y) separates the plane into two domains
and its second coordinate tends to oo as y — +o0o. The point Dy € T" lies
in one of the two domains, more precisely, in ¢~'((x;, +00) X R) because
¢~ ! is a negative monotone twist map and Dy lies above Ey.

Recall that T" is parametrized by v such that (t + 1) = v(t) + (1,0).
Therefore one of the points y(d —k) = Dy — (k,0) with k£ > 1 lies in the other
domain ¢~ !((—o0,x;) x R). Since T is homotopically nontrivial, v|jg—r.a is
a connecting path between them. Hence I must intersect ¢~ !(v,,).

Finally, we claim that there is a first intersection point on T" before Dy ;
this will be our Ag. If not, there is a sequence of intersection points between
¢~ '(vy,) and T accumulating at Do, and so, by continuity, Dy € vy, belongs
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also to qb_l(vx]). But then ¢(vy,) N vy, contains two points, in contradiction
to the twist property. [

Let us define the pre-image ¢ '(E;) of E; = (x1,y1) € vy, to be the last
intersection point of ' and ¢~ !(v,,) before Ag (with respect to the natural
order on ¢~ !(v,,) inherited from that on v, ). ¢~ '(E;) is different from
Ay, since otherwise it would be a point of self-intersection for I', which is
excluded by our assumption that I" is embedded. Of course, it may happen
that ¢~ !(E,) and E, are one and the same point on I", but in general " HED)
comes after Ej.

FIGURE 4

The first step of the iteration procedure

Again, the part of ' between Ay and ¢ !(E;), together with that of
¢~ (vy,) between ¢~ (E;) and Ag, bounds a domain; its image under ¢ will
be denoted by €2;. The vertical segment between Ey and Dy lies completely
in $~1(Q,) and divides it into two domains, Qg and ¢~ 1(Q) \ Qo.

ITa. APPLYING ¢ ONCE

Now we apply ¢ to the whole picture. ¢~ !(v,,) will be mapped onto the
vertical v,, through D; = ¢(Ag) and E;, where D; lies above E; because ¢
preserves the orientation. If we just look at the part of I" between D and E;
and that of v,, between E; and D;, we are in the same topological situation )
as before — together, they enclose the domain €2;. It does not matter that the
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part of ' may curl and intersect vy, again. What is important, however, is
the fact that the area of the new €2; has increased:

Q1| = Qo] + ‘Gb_l(ﬂl)\go‘

We need an estimate from below for that additional area. To do so, we
choose a ray rg, centred at Ey and pointing into the second quadrant, such that
qb"l(v,\-l) does not intersect the open half cone between ry and {xo} x[yo, +00) ;
see Figure 4. That this is possible follows from the above-mentioned “cone
condition” for a monotone twist map. We point out that the angle of the
corresponding half cone can be chosen independent of the base point on I'.

We define By to be the first intersection point of 7y and I" before Dy (with
respect to the order on I'), and Bj, to be the last intersection point of I" and rg
before By (with respect to the natural order on ry). The existence of By and
Bj is guaranteed by the same reasoning as in the proof of Lemma 2. Moreover,
B is different from By because, otherwise, I would have a self-intersection.
Note that it is possible that B = Ej.

We call Ag the domain bounded by the parts of I" between By and Dy,
and Ey and B}, as well as ry between B{ and By, and v,, between Dy and
Eo. Then we have

4] > Qo] + |20

IIb. APPLYING ¢ MANY TIMES

Now we iterate the above procedure. For this, we set x» = m.(H(E;))
and define A; and ¢~ '(E,) as intersection points of qb_l(v,\.z) and I' in a
completely analogous way as before. After one application of ¢, we obtain a
new domain £, whose area can be estimated by

Q| > [Q] + [A1] > [Qo| + |Ao]| +|A1] -

After n iterations, we obtain

n—1

‘Qn| 2 |QO| + Z ‘Ak‘ y
k=0

Note that ¢"(I') = I is fixed for all n and contained in some strip RxX[—R,R].
Let us call L the horizontal diameter of the “fundamental part” 7|p,1; of T.
Then sup,~|€2,| <2R-L, and hence

Al — 0

as n — <.
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IIc. THE GRAPH PROPERTY

From the previous discussion, we will now derive that I' must have a
self-intersection, which contradicts the assumption that I" is embedded. We
define the points B,, B/, D, and E, on T' exactly as before. Call T, the
part of I between B, and D,, and I that between E, and B/ (which may
reduce to the single point E, = B/ ). We distinguish two cases.

If dist(T',,I) — 0, then there are points C, € I, and C/ € I") such
that dist(C,,C’) — 0, and we may assume that all of them lie in [0, 1] x R.
This means that (on subsequences) C, and C; converge to one and the same
point on I'. This is a point of self-intersection, because the part of I between
C, and CJ is always part of the boundary of a domain whose area is at
least |€].

Ignoring subsequences, the other case is when dist(I',,I") > € > 0. Then
we can put an open ball of diameter € between I', and I',. The area of A, is
at least that of the ball, intersected with the half cone between the rays from
E, through D, (the upper part of the vertical v, ), and from E, through B,
(which is r,). Consider, in general, the area of the intersection of a half cone
with a ball whose centre lies inside that half cone; this area becomes smallest
if we put the centre of the ball right at the corner. In our situation, the crucial
point is that the angle at the corner E, is fixed for all n. Therefore the area
of the above disk segment is a lower bound for all |A,|. But this contradicts
|A,| — 0, so this case cannot happen.

Thus our assumption that I" is not a graph leads to a contradiction.

IId. THE LIPSCHITZ PROPERTY

We want to show that I' is the graph of a Lipschitz function, whose
Lipschitz constant can be estimated in terms of the twist constant ¢. Pick
any point P on I', and consider the ray rp constructed in the same way for
P, as rg had been constructed for Ey in Section Ila. In particular, the angle
between rp and the vertical through P depends only on 6. If T' intersects rp
in a second point different from P, then the pre-image of the vertical through
¢(P) must intersect I" in a second point, too; see Figure 5. This follows from
the same arguments as in the proof of Lemma 2. But now one application of
¢ shows that the vertical through ¢(P) intersects I'" in at least two points,
which is impossible since I' is a graph. Therefore I" cannot intersect any of
the rp’s, hence it is a Lipschitz graph with Lipschitz constant only depending
on 9.
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FIGURE 5
Why I' must be a Lipschitz graph

[II. THE SECOND CASE

Finally, the same remark can be applied in the second of the two cases
from Lemma 1 where I" contains a whole vertical interval. For we may take
P to be the midpoint of that interval and apply ¢ once — the vertical through
#(P) will intersect I" in two isolated points Dy and Eg, and we are back in
the first situation we already dealt with.

The proof of the theorem is complete.

3. CONCLUDING REMARKS

For the sake of clarity, we did not prove the most general result that can
be obtained by our method. Here we just indicate possible generalizations.

First of all, our proof does not require the monotone twist condition but
only a sort of “cone condition on I'”. Namely, what we really need is the
requirement that all (pre-)images of verticals lie outside certain cones centred
at points on I'; we do not use the much more restrictive fact that they are
graphs. (This subtle point might be the reason why we have not succeeded in
proving a well-known generalization of Birkhoff’s Theorem to boundaries of
invariant annuli [Fa, He, KH] by our method.)
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