Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de I'Enseignement Mathématique

Band: 44 (1998)

Heft: 3-4: L'ENSEIGNEMENT MATHEMATIQUE

Artikel: DYNAMICAL SYSTEMS APPROACH TO BIRKHOFF'S THEOREM
Autor: SIBURG, Karl Friedrich

Kapitel: 1. Introduction

DOI: https://doi.org/10.5169/seals-63906

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 25.11.2025

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-63906
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

L Enseignement Mathématique, t. 44 (1998), p. 291-303

A DYNAMICAL SYSTEMS APPROACH TO BIRKHOFF’'S THEOREM

by Karl Friedrich SIBURG")

ABSTRACT. We present a new proof of Birkhoff’s classical theorem that an
embedded homotopically nontrivial circle, which is invariant under a monotone twist
map on S' x R, must be the graph of a Lipschitz function.

1. INTRODUCTION

Consider the two-dimensional cylinder S! x R = R/Z x R, respec-
tively its universal cover R? with coordinates x,y. A diffeomorphism
#: S' x R — S! x R is called a monotone twist mapping if it is area-
preserving and satisfies the monotone twist condition O(m,0¢)/dy # 0, where
7, denotes the projection onto the first coordinate. This means, in particular,
that (pre-)images of verticals under any lift of ¢ are graphs over the x-axis.

The twist condition is not as artificial as it might seem. Monotone
twist mappings appear in a variety of situations, often unexpected and only
discovered by clever coordinate choices. In the following, we give a few

examples. The reader may consult [LCa, MF, Mol, Mo2] for more detailed
information and further references.

) This work has been supported by a Minerva Research Fellowship and a postdoctoral
grant from the DFG-Graduiertenkolleg “Nichtlineare Differentialgleichungen”, Universitit Freiburg
(Germany).
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EXAMPLE 1. The simplest examples of monotone twist mappings are
integrable ones which, by definition, preserve the y-coordinate. If ¢: (x,y) —
(x +f(x,y),y) is area-preserving, i.e. ¢*(dx A dy) = dx Ady, then f = f(y);
the monotone twist condition is equivalent to f’(y) # 0. Hence any integrable
monotone twist map 1s of the form

¢: (x5, — x+1®),y)

with some monotone function f. It “twists” the invariant curves R x {y} in
the sense that the angle of rotation on these curves grows or decreases with
y at least by some fixed rate §.

EXAMPLE 2. In some sense the “simplest” non-integrable monotone twist
map is the so-called standard map

k k
o (x,y) — (x+y+ — sin27x,y + — sin27rx)
21 21

where k > 0 is a parameter. This map has been the subject of extensive
analytical and numerical studies. Famous pictures illustrate the transition from
integrability (kK = 0) to “chaos” (k =~ 10).

(point, direction) 1

(point, direction) 0

FIGURE 1

A strictly convex billiard in the plane

EXAMPLE 3. A particularly interesting class of monotone twist maps
comes from planar convex billiards. The investigation of such systems goes
back to Birkhoff who introduced them as a model case for nonlinear dynamical
systems; for a modern survey see [Ta]. Given a strictly convex domain
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in the Euclidean plane with smooth boundary 0Q, we play the following
game. Let a mass point move freely inside €2, starting at some initial point on
the boundary with some initial direction pointing into €2; when the “billiard
ball” hits the boundary, it gets reflected according to the rule “angle of
incidence = angle of reflection”. The billiard map associates to a pair (point
on the boundary, direction), respectively (s, ¢) = (arclength parameter divided
by total length, angle with the tangent), the corresponding data when the
points hits the boundary again; see Figure 1. This map, which is defined
on S! x (0,7), is not a monotone twist map. However, elementary geometry
shows that it preserves the 2-form sin¢ dp Ads = d(— cos ¢) Ads. Hence the
billiard map preserves the standard area form dx A dy in the new coordinates
(x,y) = (s, —cos @) € S! x (—1,1). Moreover, if you increase the angle with
the positive tangent to JQ for the initial direction, the point where you
hit 0Q again will move around 0Q in positive direction. This means that
0x1/0yy > 0, so the billiard map satisfies the monotone twist condition.

EXAMPLE 4. Consider a particle moving in a potential on the line. Ac-
cording to Newton’s Second Law, the motion of the particle is determined
by the differential equation X(¢) = V'(x(¢)). This can be written as a Hamil-
tonian system % = OH(x,y)/0y, ¥ = —0H(x,y)/Ox with the Hamiltonian
H(x,y) = y*/2 — V(x). For small enough > 0, we have

Ox(t;x(0),(0) / | / y(r; x(0), y(0))
= ; x(0), y(0)) d1 = :
3y(0) ay() J, OO dr = | T AT > 0

Therefore the time-7-map ¢}, is a monotone twist map provided ¢ is small.

A particular case is that of a mathematical pendulum where x is the angle
to the vertical and V'(x) = —sin2nx. The phase portrait in S' x R shows
two types of invariant curves: contractible ones around the stable equilibrium
(“librational” circles) and homotopically nontrivial ones above and below the
separatrices (“rotational” curves).

A classical theorem of Birkhoff (see [Bil, §44] and [Bi2, §3]) says that
an embedded, closed, homotopically nontrivial curve, which is invariant under
a monotone twist map, must be the graph of a Lipschitz continuous function
on S!. This is a strong consequence of the fact that the map under consideration
is a monotone twist map. The assertion does not follow, of course, if one
drops the monotone twist condition (just take the identity mapping); nor is
it valid without the area-preserving property (see [LCa, Prop. 15.3] for a
counterexample). Finally, we have seen in Example 4 that a monotone twist
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map can perfectly possess embedded invariant circles which are not graphs,
but they are homotopically trivial.

For strictly convex billiards, Birkhoff’s Theorem states that invariant curves
of the billiard map correspond to so-called caustics; these are continuous curves
inside € with the property that a billiard trajectory, which is tangent to the
caustic, stays tangent to it after one reflection.

Birkhoff’s Theorem can also be used to derive non-existence results for
invariant curves. It implies, for instance, that for convex billiards which are
not strictly convex, there are no caustics at all [Mal]. Furthermore, Birkhoff’s
Theorem provides a useful criterion for the non-existence of invariant curves
for the standard map. This criterion, together with numerical calculations,
pushed the parameter bound, above which the standard map possesses no
invariant curves anymore, down to 63/64 [MP].
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FIGURE 2

An invariant curve which is not a graph

There are several proofs of different versions of Birkhoff’s Theorem [Fa,
He, KH, Ma2, Ma3]. All of them are based on Birkhoff’s ideas and use
topological arguments. Their common 1dea is to consider two Kinds of points
on an invariant closed curve: those accessible by rays that originate from the
lower end of the cylinder and are tilted to the right, and those accessible by
rays tilted to the left; see Figure 2. It is shown that these two classes coincide,
and hence every point on the invariant curve is accessible by a vertical ray.
This latter fact, however, obvious as it may seem, is not trivial.

The aim of this note is to introduce a different approach to proving
Birkhoff’s Theorem, involving a new iteration argument. Assume that ¢
possesses an invariant curve I' that is not a graph but folded over the x-axis.
Then, due to the fact that ¢ is an area-preserving twist map, one application
of ¢ presses some more area into that fold. Iterating this procedure, we see
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that the folds will enclose larger and larger domains. Their areas, however,
stay bounded since I" is an invariant curve on the cylinder. Therefore those
additional areas must tend to zero. But this can only happen if I" has a point
of self-intersection, which contradicts its embeddedness.

I would like to thank Patrice Le Calvez for drawing my attention to the fact
that Birkhoff’s Theorem is not true without the area-preserving assumption,
as well as Martin Beibel (from the Institute for Mathematical Stochastics,
University of Freiburg) for reading and commenting on a preliminary version.
This proof was presented in one of those evening sessions during the Dynamical
Systems meeting in Oberwolfach (1997), and I thank everyone in the audience
for attending.

2. BIRKHOFF’S THEOREM

We consider a C!-diffeomorphism ¢: S! x R — S' x R of the two-
dimensional cylinder; for the sake of simplicity, we keep the same notation
for a lift of ¢ to R? with coordinates x.y.

DEFINITION. We say that ¢ is a monotone twist mapping if the following
three conditions hold:
o o0%(dx Ndy) =dx Ndy, i.e. ¢ preserves area and orientation.
e moo(x,y) — Foo as y — *o0, i.e. ¢ preserves the ends of the cylinder.

o |O(meo0@)/0y] > 6§ > 0, ie. ¢ satisfies a uniform monotone twist
condition.

According to the sign of d(m, o ¢)/dy, we call ¢ a positive, respectively
negative, monotone twist mapping.

The uniformity of the twist condition has the following geometric interpre-
tation (“cone condition™). Let ¢ be a positive monotone twist map, and denote
by v, the vertical {x} X R. Then the image ¢(v,) crosses the vertical through
¢(x,y) in positive direction and stays outside a cone around it with centre
¢(x,y), whose angle depends only on the twist constant §: see Figure 3.

Note that if ¢ is a positive monotone twist mapping then its inverse O
1s a negative monotone twist mapping.

For the statement of the theorem, recall that a closed continuous curve is

embedded if it is homeomorphic to S'; in particular, it cannot have a point
of self-intersection.
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