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A DYNAMICAL SYSTEMS APPROACH TO BIRKHOFF’'S THEOREM

by Karl Friedrich SIBURG")

ABSTRACT. We present a new proof of Birkhoff’s classical theorem that an
embedded homotopically nontrivial circle, which is invariant under a monotone twist
map on S' x R, must be the graph of a Lipschitz function.

1. INTRODUCTION

Consider the two-dimensional cylinder S! x R = R/Z x R, respec-
tively its universal cover R? with coordinates x,y. A diffeomorphism
#: S' x R — S! x R is called a monotone twist mapping if it is area-
preserving and satisfies the monotone twist condition O(m,0¢)/dy # 0, where
7, denotes the projection onto the first coordinate. This means, in particular,
that (pre-)images of verticals under any lift of ¢ are graphs over the x-axis.

The twist condition is not as artificial as it might seem. Monotone
twist mappings appear in a variety of situations, often unexpected and only
discovered by clever coordinate choices. In the following, we give a few

examples. The reader may consult [LCa, MF, Mol, Mo2] for more detailed
information and further references.

) This work has been supported by a Minerva Research Fellowship and a postdoctoral
grant from the DFG-Graduiertenkolleg “Nichtlineare Differentialgleichungen”, Universitit Freiburg
(Germany).
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EXAMPLE 1. The simplest examples of monotone twist mappings are
integrable ones which, by definition, preserve the y-coordinate. If ¢: (x,y) —
(x +f(x,y),y) is area-preserving, i.e. ¢*(dx A dy) = dx Ady, then f = f(y);
the monotone twist condition is equivalent to f’(y) # 0. Hence any integrable
monotone twist map 1s of the form

¢: (x5, — x+1®),y)

with some monotone function f. It “twists” the invariant curves R x {y} in
the sense that the angle of rotation on these curves grows or decreases with
y at least by some fixed rate §.

EXAMPLE 2. In some sense the “simplest” non-integrable monotone twist
map is the so-called standard map

k k
o (x,y) — (x+y+ — sin27x,y + — sin27rx)
21 21

where k > 0 is a parameter. This map has been the subject of extensive
analytical and numerical studies. Famous pictures illustrate the transition from
integrability (kK = 0) to “chaos” (k =~ 10).

(point, direction) 1

(point, direction) 0

FIGURE 1

A strictly convex billiard in the plane

EXAMPLE 3. A particularly interesting class of monotone twist maps
comes from planar convex billiards. The investigation of such systems goes
back to Birkhoff who introduced them as a model case for nonlinear dynamical
systems; for a modern survey see [Ta]. Given a strictly convex domain
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in the Euclidean plane with smooth boundary 0Q, we play the following
game. Let a mass point move freely inside €2, starting at some initial point on
the boundary with some initial direction pointing into €2; when the “billiard
ball” hits the boundary, it gets reflected according to the rule “angle of
incidence = angle of reflection”. The billiard map associates to a pair (point
on the boundary, direction), respectively (s, ¢) = (arclength parameter divided
by total length, angle with the tangent), the corresponding data when the
points hits the boundary again; see Figure 1. This map, which is defined
on S! x (0,7), is not a monotone twist map. However, elementary geometry
shows that it preserves the 2-form sin¢ dp Ads = d(— cos ¢) Ads. Hence the
billiard map preserves the standard area form dx A dy in the new coordinates
(x,y) = (s, —cos @) € S! x (—1,1). Moreover, if you increase the angle with
the positive tangent to JQ for the initial direction, the point where you
hit 0Q again will move around 0Q in positive direction. This means that
0x1/0yy > 0, so the billiard map satisfies the monotone twist condition.

EXAMPLE 4. Consider a particle moving in a potential on the line. Ac-
cording to Newton’s Second Law, the motion of the particle is determined
by the differential equation X(¢) = V'(x(¢)). This can be written as a Hamil-
tonian system % = OH(x,y)/0y, ¥ = —0H(x,y)/Ox with the Hamiltonian
H(x,y) = y*/2 — V(x). For small enough > 0, we have

Ox(t;x(0),(0) / | / y(r; x(0), y(0))
= ; x(0), y(0)) d1 = :
3y(0) ay() J, OO dr = | T AT > 0

Therefore the time-7-map ¢}, is a monotone twist map provided ¢ is small.

A particular case is that of a mathematical pendulum where x is the angle
to the vertical and V'(x) = —sin2nx. The phase portrait in S' x R shows
two types of invariant curves: contractible ones around the stable equilibrium
(“librational” circles) and homotopically nontrivial ones above and below the
separatrices (“rotational” curves).

A classical theorem of Birkhoff (see [Bil, §44] and [Bi2, §3]) says that
an embedded, closed, homotopically nontrivial curve, which is invariant under
a monotone twist map, must be the graph of a Lipschitz continuous function
on S!. This is a strong consequence of the fact that the map under consideration
is a monotone twist map. The assertion does not follow, of course, if one
drops the monotone twist condition (just take the identity mapping); nor is
it valid without the area-preserving property (see [LCa, Prop. 15.3] for a
counterexample). Finally, we have seen in Example 4 that a monotone twist
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map can perfectly possess embedded invariant circles which are not graphs,
but they are homotopically trivial.

For strictly convex billiards, Birkhoff’s Theorem states that invariant curves
of the billiard map correspond to so-called caustics; these are continuous curves
inside € with the property that a billiard trajectory, which is tangent to the
caustic, stays tangent to it after one reflection.

Birkhoff’s Theorem can also be used to derive non-existence results for
invariant curves. It implies, for instance, that for convex billiards which are
not strictly convex, there are no caustics at all [Mal]. Furthermore, Birkhoff’s
Theorem provides a useful criterion for the non-existence of invariant curves
for the standard map. This criterion, together with numerical calculations,
pushed the parameter bound, above which the standard map possesses no
invariant curves anymore, down to 63/64 [MP].

-
N
7

i
1
I
! ’ 1 \ \
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,

FIGURE 2

An invariant curve which is not a graph

There are several proofs of different versions of Birkhoff’s Theorem [Fa,
He, KH, Ma2, Ma3]. All of them are based on Birkhoff’s ideas and use
topological arguments. Their common 1dea is to consider two Kinds of points
on an invariant closed curve: those accessible by rays that originate from the
lower end of the cylinder and are tilted to the right, and those accessible by
rays tilted to the left; see Figure 2. It is shown that these two classes coincide,
and hence every point on the invariant curve is accessible by a vertical ray.
This latter fact, however, obvious as it may seem, is not trivial.

The aim of this note is to introduce a different approach to proving
Birkhoff’s Theorem, involving a new iteration argument. Assume that ¢
possesses an invariant curve I' that is not a graph but folded over the x-axis.
Then, due to the fact that ¢ is an area-preserving twist map, one application
of ¢ presses some more area into that fold. Iterating this procedure, we see




'f

BIRKHOFF’S THEOREM 295

that the folds will enclose larger and larger domains. Their areas, however,
stay bounded since I" is an invariant curve on the cylinder. Therefore those
additional areas must tend to zero. But this can only happen if I" has a point
of self-intersection, which contradicts its embeddedness.

I would like to thank Patrice Le Calvez for drawing my attention to the fact
that Birkhoff’s Theorem is not true without the area-preserving assumption,
as well as Martin Beibel (from the Institute for Mathematical Stochastics,
University of Freiburg) for reading and commenting on a preliminary version.
This proof was presented in one of those evening sessions during the Dynamical
Systems meeting in Oberwolfach (1997), and I thank everyone in the audience
for attending.

2. BIRKHOFF’S THEOREM

We consider a C!-diffeomorphism ¢: S! x R — S' x R of the two-
dimensional cylinder; for the sake of simplicity, we keep the same notation
for a lift of ¢ to R? with coordinates x.y.

DEFINITION. We say that ¢ is a monotone twist mapping if the following
three conditions hold:
o o0%(dx Ndy) =dx Ndy, i.e. ¢ preserves area and orientation.
e moo(x,y) — Foo as y — *o0, i.e. ¢ preserves the ends of the cylinder.

o |O(meo0@)/0y] > 6§ > 0, ie. ¢ satisfies a uniform monotone twist
condition.

According to the sign of d(m, o ¢)/dy, we call ¢ a positive, respectively
negative, monotone twist mapping.

The uniformity of the twist condition has the following geometric interpre-
tation (“cone condition™). Let ¢ be a positive monotone twist map, and denote
by v, the vertical {x} X R. Then the image ¢(v,) crosses the vertical through
¢(x,y) in positive direction and stays outside a cone around it with centre
¢(x,y), whose angle depends only on the twist constant §: see Figure 3.

Note that if ¢ is a positive monotone twist mapping then its inverse O
1s a negative monotone twist mapping.

For the statement of the theorem, recall that a closed continuous curve is

embedded if it is homeomorphic to S'; in particular, it cannot have a point
of self-intersection.
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FIGURE 3

The “cone condition”

THEOREM (Birkhoff). Let ¢ be a monotone twist mapping on S' x R,
and T a closed, embedded, homotopically nontrivial curve in S' x R such
that o(I') =T

Then T is the graph of a Lipschitz continuous function on S'. Moreover,
the Lipschitz constant can be bounded in terms of the twist constant 6.

The proof of Birkhoff’s Theorem will take up the rest of this section.

We assume that the monotone twist map ¢ possesses an embedded invariant
curve I" which is not a graph. From this we will conclude that I" has a point

of self-intersection, which contradicts the assumptions. The Lipschitz property
will be proved at the very end.

I. SET-UP

We lift everything to R? and keep the same notation. Fix a parametrization
v: R — R? of T such that (¢t + 1) = v(t) + (1,0). This equips I' with an
order inherited from R, and we can say whether a point on I' comes before

or after another one. That I is not a graph means that the continuous function
f=movy: R— R is not injective.

LEMMA 1. We have one of the following two cases (or both) :
o There are d < e such that f(d) = f(e) and f(t) > f(d) for all t € (d,e),

e f is constant on some nontrivial interval.
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Proof. Since f is not injective there are a < b with f(a) =f(b) = h.If f
is not constant on [a, b] then m = ming, 5 f < A or M = max(g, f > h.In the
first case, we set d = max{t < a |f({) =m} and e =min{r > a | f(t) = m};
then f(d) = f(e) = m and f(r) > m for t € (d,e). In the second case,
we put ¢ = min{sr > a | f({) = M} and set d = max{r < ¢ | f(t) = h}
and e = min{r > ¢ | f(t) = h}; then f(d) = f(e) = h and f() > h for
t € (d,e). Note that all numbers are well-defined because f is continuous and
f(t) — +oo as t — +oo. [l

II. THE FIRST CASE

Let us deal with the first case from Lemma 1, and denote by v, the vertical
{x} x R. By construction, the points Dy = v(d) and Eq = ~y(e) = (xo, yo) lie
on the same vertical v,,. Moreover, the part of I" between Dy and Ej, together
with the part of the vertical v,, between Ey and Dj, forms an embedded
simply closed curve. By the Jordan-Schoenflies Theorem, this curve bounds
a domain in R? which we call Q.

There are two alternatives: either Dy lies above Ey on wy,, L.e.
my(Do) > my(Ep), or below. In the first case, we choose ¢ or ¢~! in such
a way that we obtain a positive monotone twist map; the second alternative
requires a negative twist map. Without loss of generality, we assume that Dy
lies above Ey and ¢ is a positive monotone twist mapping.

We set x; = m(¢(Ep)) and consider the intersection points of qﬁ‘“l(u\.l)
and I'; Ey 1s one of them. Let Ay be the first intersection point of qb_l('u_\.])
and I' before Dy (with respect to the order on I'). See Figure 4 by way of
illustration.

LEMMA 2. The point Agy is well-defined.

Proof. The curve y — ¢~ !(x;,y) separates the plane into two domains
and its second coordinate tends to oo as y — +o0o. The point Dy € T" lies
in one of the two domains, more precisely, in ¢~'((x;, +00) X R) because
¢~ ! is a negative monotone twist map and Dy lies above Ey.

Recall that T" is parametrized by v such that (t + 1) = v(t) + (1,0).
Therefore one of the points y(d —k) = Dy — (k,0) with k£ > 1 lies in the other
domain ¢~ !((—o0,x;) x R). Since T is homotopically nontrivial, v|jg—r.a is
a connecting path between them. Hence I must intersect ¢~ !(v,,).

Finally, we claim that there is a first intersection point on T" before Dy ;
this will be our Ag. If not, there is a sequence of intersection points between
¢~ '(vy,) and T accumulating at Do, and so, by continuity, Dy € vy, belongs



298 K. F. SIBURG

also to qb_l(vx]). But then ¢(vy,) N vy, contains two points, in contradiction
to the twist property. [

Let us define the pre-image ¢ '(E;) of E; = (x1,y1) € vy, to be the last
intersection point of ' and ¢~ !(v,,) before Ag (with respect to the natural
order on ¢~ !(v,,) inherited from that on v, ). ¢~ '(E;) is different from
Ay, since otherwise it would be a point of self-intersection for I', which is
excluded by our assumption that I" is embedded. Of course, it may happen
that ¢~ !(E,) and E, are one and the same point on I", but in general " HED)
comes after Ej.

FIGURE 4

The first step of the iteration procedure

Again, the part of ' between Ay and ¢ !(E;), together with that of
¢~ (vy,) between ¢~ (E;) and Ag, bounds a domain; its image under ¢ will
be denoted by €2;. The vertical segment between Ey and Dy lies completely
in $~1(Q,) and divides it into two domains, Qg and ¢~ 1(Q) \ Qo.

ITa. APPLYING ¢ ONCE

Now we apply ¢ to the whole picture. ¢~ !(v,,) will be mapped onto the
vertical v,, through D; = ¢(Ag) and E;, where D; lies above E; because ¢
preserves the orientation. If we just look at the part of I" between D and E;
and that of v,, between E; and D;, we are in the same topological situation )
as before — together, they enclose the domain €2;. It does not matter that the
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part of ' may curl and intersect vy, again. What is important, however, is
the fact that the area of the new €2; has increased:

Q1| = Qo] + ‘Gb_l(ﬂl)\go‘

We need an estimate from below for that additional area. To do so, we
choose a ray rg, centred at Ey and pointing into the second quadrant, such that
qb"l(v,\-l) does not intersect the open half cone between ry and {xo} x[yo, +00) ;
see Figure 4. That this is possible follows from the above-mentioned “cone
condition” for a monotone twist map. We point out that the angle of the
corresponding half cone can be chosen independent of the base point on I'.

We define By to be the first intersection point of 7y and I" before Dy (with
respect to the order on I'), and Bj, to be the last intersection point of I" and rg
before By (with respect to the natural order on ry). The existence of By and
Bj is guaranteed by the same reasoning as in the proof of Lemma 2. Moreover,
B is different from By because, otherwise, I would have a self-intersection.
Note that it is possible that B = Ej.

We call Ag the domain bounded by the parts of I" between By and Dy,
and Ey and B}, as well as ry between B{ and By, and v,, between Dy and
Eo. Then we have

4] > Qo] + |20

IIb. APPLYING ¢ MANY TIMES

Now we iterate the above procedure. For this, we set x» = m.(H(E;))
and define A; and ¢~ '(E,) as intersection points of qb_l(v,\.z) and I' in a
completely analogous way as before. After one application of ¢, we obtain a
new domain £, whose area can be estimated by

Q| > [Q] + [A1] > [Qo| + |Ao]| +|A1] -

After n iterations, we obtain

n—1

‘Qn| 2 |QO| + Z ‘Ak‘ y
k=0

Note that ¢"(I') = I is fixed for all n and contained in some strip RxX[—R,R].
Let us call L the horizontal diameter of the “fundamental part” 7|p,1; of T.
Then sup,~|€2,| <2R-L, and hence

Al — 0

as n — <.
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IIc. THE GRAPH PROPERTY

From the previous discussion, we will now derive that I' must have a
self-intersection, which contradicts the assumption that I" is embedded. We
define the points B,, B/, D, and E, on T' exactly as before. Call T, the
part of I between B, and D,, and I that between E, and B/ (which may
reduce to the single point E, = B/ ). We distinguish two cases.

If dist(T',,I) — 0, then there are points C, € I, and C/ € I") such
that dist(C,,C’) — 0, and we may assume that all of them lie in [0, 1] x R.
This means that (on subsequences) C, and C; converge to one and the same
point on I'. This is a point of self-intersection, because the part of I between
C, and CJ is always part of the boundary of a domain whose area is at
least |€].

Ignoring subsequences, the other case is when dist(I',,I") > € > 0. Then
we can put an open ball of diameter € between I', and I',. The area of A, is
at least that of the ball, intersected with the half cone between the rays from
E, through D, (the upper part of the vertical v, ), and from E, through B,
(which is r,). Consider, in general, the area of the intersection of a half cone
with a ball whose centre lies inside that half cone; this area becomes smallest
if we put the centre of the ball right at the corner. In our situation, the crucial
point is that the angle at the corner E, is fixed for all n. Therefore the area
of the above disk segment is a lower bound for all |A,|. But this contradicts
|A,| — 0, so this case cannot happen.

Thus our assumption that I" is not a graph leads to a contradiction.

IId. THE LIPSCHITZ PROPERTY

We want to show that I' is the graph of a Lipschitz function, whose
Lipschitz constant can be estimated in terms of the twist constant ¢. Pick
any point P on I', and consider the ray rp constructed in the same way for
P, as rg had been constructed for Ey in Section Ila. In particular, the angle
between rp and the vertical through P depends only on 6. If T' intersects rp
in a second point different from P, then the pre-image of the vertical through
¢(P) must intersect I" in a second point, too; see Figure 5. This follows from
the same arguments as in the proof of Lemma 2. But now one application of
¢ shows that the vertical through ¢(P) intersects I'" in at least two points,
which is impossible since I' is a graph. Therefore I" cannot intersect any of
the rp’s, hence it is a Lipschitz graph with Lipschitz constant only depending
on 9.
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FIGURE 5
Why I' must be a Lipschitz graph

[II. THE SECOND CASE

Finally, the same remark can be applied in the second of the two cases
from Lemma 1 where I" contains a whole vertical interval. For we may take
P to be the midpoint of that interval and apply ¢ once — the vertical through
#(P) will intersect I" in two isolated points Dy and Eg, and we are back in
the first situation we already dealt with.

The proof of the theorem is complete.

3. CONCLUDING REMARKS

For the sake of clarity, we did not prove the most general result that can
be obtained by our method. Here we just indicate possible generalizations.

First of all, our proof does not require the monotone twist condition but
only a sort of “cone condition on I'”. Namely, what we really need is the
requirement that all (pre-)images of verticals lie outside certain cones centred
at points on I'; we do not use the much more restrictive fact that they are
graphs. (This subtle point might be the reason why we have not succeeded in
proving a well-known generalization of Birkhoff’s Theorem to boundaries of
invariant annuli [Fa, He, KH] by our method.)
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Secondly, Birkhoff’s Theorem also holds true for invariant curves of
products ¢y o---o¢; of monotone twist mappings of the same sign. In general,
such products are not monotone twist mappings anymore. This generalization
follows immediately by our method if, even more generally, each ¢, satisfies
the same “cone condition” on (¢,_;0---0¢1)(I'). For every single ¢, presses
more area into a fold, and sup,~, |€2,| < co because I" is mapped onto itself
again after N steps, instead of one. A proof along the traditional lines was
given by Mather only a couple of years ago [Ma3, Appendix].

Finally, we did not really need that ¢ is a diffeomorphism. Everything can
also be formulated and proved for homeomorphisms that preserve Lebesgue
measure and satisfy the “cone condition”.
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