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A DYNAMICAL SYSTEMS APPROACH TO BIRKHOFF'S THEOREM

by Karl Friedrich SlBURG*)

Abstract. We present a new proof of Birkhoff's classical theorem that an

embedded homotopically nontrivial circle, which is invariant under a monotone twist

map on S1 x R, must be the graph of a Lipschitz function.

1. Introduction

Consider the two-dimensional cylinder S1 X R R/ZxR, respectively

its universal cover R2 with coordinates x, y. A diffeomorphism
(/>: S1 xR —» S1 xR is called a monotone twist mapping if it is area-

preserving and satisfies the monotone twist condition 9(tvx o <ß)/dy ^ 0, where

7TV denotes the projection onto the first coordinate. This means, in particular,
that (pre-)images of verticals under any lift of </> are graphs over the x-axis.

The twist condition is not as artificial as it might seem. Monotone
twist mappings appear in a variety of situations, often unexpected and only
discovered by clever coordinate choices. In the following, we give a few

examples. The reader may consult [LCa, MF, Mol, Mo2] for more detailed
information and further references.

*) This work has been supported by a Minerva Research Fellowship and a postdoctoral
grant from the DFG-Graduiertenkolleg "Nichtlineare Differentialgleichungen", Universität Freiburg
(Germany).
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Example 1. The simplest examples of monotone twist mappings are

integrable ones which, by definition, preserve the y-coordinate. If 0: (x,y) i—>

(x+/(x,y),y) is area-preserving, i.e. cf)*(dxAdy) dxAdy, then / =fiy);
the monotone twist condition is equivalent to f'(y) ^ 0. Hence any integrable
monotone twist map is of the form

0: (x,y) (x+/(y),y)

with some monotone function /. It "twists" the invariant curves R x {y} in
the sense that the angle of rotation on these curves grows or decreases with

y at least by some fixed rate 6.

Example 2. In some sense the "simplest" non-integrable monotone twist

map is the so-called standard map

k k
0 : (x, y) (x + y + —- sin 2ttx, y + —- sin 2ttx)

v 2tï 2n y

where k > 0 is a parameter. This map has been the subject of extensive

analytical and numerical studies. Famous pictures illustrate the transition from

integrability (k 0) to "chaos" (k « 10).

Figure 1

A strictly convex billiard in the plane

Example 3. A particularly interesting class of monotone twist maps

comes from planar convex billiards. The investigation of such systems goes
back to Birkhoff who introduced them as a model case for nonlinear dynamical

systems; for a modern survey see [Ta]. Given a strictly convex domain Q
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in the Euclidean plane with smooth boundary <9£2, we play the following

game. Let a mass point move freely inside Q, starting at some initial point on

the boundary with some initial direction pointing into £2 ; when the "billiard
ball" hits the boundary, it gets reflected according to the rule "angle of
incidence angle of reflection". The billiard map associates to a pair (point
on the boundary, direction), respectively (s,cp) (arclength parameter divided

by total length, angle with the tangent), the corresponding data when the

points hits the boundary again; see Figure 1. This map, which is defined

on S1 x (0,7r), is not a monotone twist map. However, elementary geometry
shows that it preserves the 2-form sin(p dp Ads d{— cos p) Ads. Hence the

billiard map preserves the standard area form dx A dy in the new coordinates

(x,y) (s, — cos p) G S1 x (—1,1). Moreover, if you increase the angle with
the positive tangent to dQ. for the initial direction, the point where you
hit d£l again will move around dCI in positive direction. This means that

dx\ /dyo > 0, so the billiard map satisfies the monotone twist condition.

Example 4. Consider a particle moving in a potential on the line.
According to Newton's Second Law, the motion of the particle is determined
by the differential equation x(t) V'(x(t)). This can be written as a Hamil-
tonian system x dH(x,y)/dy, y -dH(x,y)/dx with the Hamiltonian
H(x,y) y2/2 — V(x). For small enough t > 0, we have

3x(f;x(0),y(0)) d fl fr <9y(r;x(0),y(0))

Therefore the time-1-map ip'H is a monotone twist map provided is small.
A particular case is that of a mathematical pendulum where x is the angle

to the vertical and V'(x)-sinlirx. The phase portrait in S1 x R shows
two types of invariant curves : contractible ones around the stable equilibrium
("librational" circles) and homotopically nontrivial ones above and below the
séparatrices ("rotational" curves).

A classical theorem of Birkhoff (see [Bil, §44] and [Bi2, §3]) says that
an embedded, closed, homotopically nontrivial curve, which is invariant under
a monotone twist map, must be the graph of a Lipschitz continuous function
on S1. This is a strong consequence of the fact that the map under consideration
is a monotone twist map. The assertion does not follow, of course, if one
drops the monotone twist condition (just take the identity mapping); nor is
it valid without the area-preserving property (see [LCa, Prop. 15.3] for a
counterexample). Finally, we have seen in Example 4 that a monotone twist
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map can perfectly possess embedded invariant circles which are not graphs,
but they are homotopically trivial.

For strictly convex billiards, Birkhoff's Theorem states that invariant curves
of the billiard map correspond to so-called caustics ; these are continuous curves
inside Q with the property that a billiard trajectory, which is tangent to the

caustic, stays tangent to it after one reflection.

Birkhoff's Theorem can also be used to derive non-existence results for
invariant curves. It implies, for instance, that for convex billiards which are

not strictly convex, there are no caustics at all [Mai]. Furthermore, Birkhoff's
Theorem provides a useful criterion for the non-existence of invariant curves
for the standard map. This criterion, together with numerical calculations,
pushed the parameter bound, above which the standard map possesses no
invariant curves anymore, down to 63/64 [MP].

There are several proofs of different versions of Birkhoff's Theorem [Fa,

He, KH, Ma2, Ma3]. All of them are based on Birkhoff's ideas and use

topological arguments. Their common idea is to consider two kinds of points

on an invariant closed curve : those accessible by rays that originate from the

lower end of the cylinder and are tilted to the right, and those accessible by

rays tilted to the left; see Figure 2. It is shown that these two classes coincide,
and hence every point on the invariant curve is accessible by a vertical ray.
This latter fact, however, obvious as it may seem, is not trivial.

The aim of this note is to introduce a different approach to proving
Birkhoff's Theorem, involving a new iteration argument. Assume that </>

possesses an invariant curve T that is not a graph but folded over the x-axis.

Then, due to the fact that cf> is an area-preserving twist map, one application
of (j) presses some more area into that fold. Iterating this procedure, we see

Figure 2

An invariant curve which is not a graph
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that the folds will enclose larger and larger domains. Their areas, however,

stay bounded since T is an invariant curve on the cylinder. Therefore those

additional areas must tend to zero. But this can only happen if T has a point
of self-intersection, which contradicts its embeddedness.

I would like to thank Patrice Le Calvez for drawing my attention to the fact

that Birkhoff's Theorem is not true without the area-preserving assumption,

as well as Martin Beibel (from the Institute for Mathematical Stochastics,

University of Freiburg) for reading and commenting on a preliminary version.

This proof was presented in one of those evening sessions during the Dynamical
Systems meeting in Oberwolfach (1997), and I thank everyone in the audience

for attending.

2. Birkhoff's theorem

We consider a C1 -diffeomorphism à: S1 x R —» S1 x R of the two-
dimensional cylinder; for the sake of simplicity, we keep the same notation
for a lift of o to R2 with coordinates x. y.

Definition. We say that 6 is a monotone wist mapping if the following
three conditions hold:
• ô*(dx A dy) dx A dy, i.e. è preserves area and orientation.
• ttv o é(x. y) —> ±oo as y —» ±oc, i.e. à preserves the ends of the cylinder.
• \d(nx o 6)/dy\ > 6 > 0, i.e. 6 satisfies a uniform monotone twist

condition.

According to the sign of <9(ttv o o)jdy, we call o a positive, respectively
negative, monotone twist mapping.

The uniformity of the twist condition has the following geometric interpretation

("cone condition"). Let o be a positive monotone twist map, and denote
by vx the vertical {x} x R. Then the image é(vx) crosses the vertical through
d>(x,y) in positive direction and stays outside a cone around it with centre
0(x,y), whose angle depends only on the twist constant <5; see Figure 3.

Note that if ç is a positive monotone twist mapping then its inverse ®~l
is a negative monotone twist mapping.

For the statement of the theorem, recall that a closed continuous curve is
embedded if it is homeomorphic to S1 ; in particular, it cannot have a point
of self-intersection.



Figure 3

The "cone condition"

Theorem (Birkhoff). Let $ be a monotone twist mapping on S1 x R,
and r a closed, embedded, homotopically nontrivial curve in S1 x R such

that 0(D T.
Then T is the graph of a Lipschitz continuous function on S1. Moreover,

the Lipschitz constant can be bounded in terms of the twist constant 6.

The proof of Birkhoff's Theorem will take up the rest of this section.

We assume that the monotone twist map f possesses an embedded invariant

curve r which is not a graph. From this we will conclude that T has a point
of self-intersection, which contradicts the assumptions. The Lipschitz property
will be proved at the very end.

I. Set-up

We lift everything to R2 and keep the same notation. Fix a parametrization

7: R —> R2 of T such that j(t + I) 7(t) + (1,0). This equips T with an

order inherited from R, and we can say whether a point on F comes before

or after another one. That T is not a graph means that the continuous function

/ 7TX 07: R -> R is not injective.

Lemma 1. We have one of the following two cases (or both):
• There are d < e such that f(d) =f(e) and f(t) > f(d) for all t G (d,e) ;

• / is constant on some nontrivial interval.
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Proof. Since / is not injective there are a < b with f(a) fib) — h. If /
is not constant on [a, b] then m min[a,b]f < h or M maX[a^\f > & In the

first case, we set <7 maxj/ < a | f(t) m} and £ min^j/ > a \f(t) m} ;

then /(J) /(e) m and f(t) > m for t G (d, e). In the second case,

we put c minjr > a | f(t) M} and set d max{t < c \ fit) h}
and e min{r > c | f(t) h} ; then f(d) f(e) h and fit) > h for

t G (d, e). Note that all numbers are well-defined because / is continuous and

fit) —> ±00 as t —» ±00.

II. The first case

Let us deal with the first case from Lemma 1, and denote by vx the vertical

{x} x R. By construction, the points D0 7(d) and £0 70?) (To,yo) lie

on the same vertical vXQ. Moreover, the part of T between D0 and Eq together

with the part of the vertical vXo between Eq and Do, forms an embedded

simply closed curve. By the Jordan-Schoenflies Theorem, this curve bounds

a domain in R2 which we call Qo-

There are two alternatives : either Do lies above Do on vXQ, i.e.

irv(Do) > 77(Dq) or below. In the first case, we choose / or 0_1 in such

a way that we obtain a positive monotone twist map; the second alternative

requires a negative twist map. Without loss of generality, we assume that Do
lies above Do and <f is a positive monotone twist mapping.

We set .\'i ttv(/(Do)) and consider the intersection points of é~~l(vXl)
and T; Do is one of them. Let Ao be the first intersection point of f~l(vXl)
and T before D0 (with respect to the order on T). See Figure 4 by way of
illustration.

Lemma 2. The point Ao is well-defined.

Proof. The curve y
1

(x\, y) separates the plane into two domains
and its second coordinate tends to ±00 as y ±00. The point D0 G T lies
in one of the two domains, more precisely, in 0_1((xi,+oo) x R) because
(p~l is a negative monotone twist map and D0 lies above D0.

Recall that T is parametrized by 7 such that 7/ + 1) 7(t) + (1,0).
Therefore one of the points 7(d-k) D0-(fc, 0) with k > 1 lies in the other
domain /_1((-oo,Xi) x R). Since T is homotopically nontrivial, 7I[d-k.d] is
a connecting path between them. Hence T must intersect fi~l(vX[).

Finally, we claim that there is a first intersection point on T before D0 ;

this will be our Ao. If not, there is a sequence of intersection points between
/_1(%.) and T accumulating at D0, and so, by continuity, D0 G vXQ belongs
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also to 0
1

(vXl But then <fi(vXo) D vX] contains two points, in contradiction
to the twist property.

Let us define the pre-image 0-1(£j) of E\ (xi,yi) G vX] to be the last

intersection point of T and 0_1(%,) before Aq (with respect to the natural

order on 0_1(uX]) inherited from that on vX[ 0_1(£i) is different from
Ao, since otherwise it would be a point of self-intersection for T, which is

excluded by our assumption that T is embedded. Of course, it may happen
that <p~l(Ei) and Eq are one and the same point on T, but in general 0_1(£j)
comes after Eq.

Again, the part of T between A0 and 0_1(£j), together with that of
0—1 (vX]) between 0_1(£j) and Ao, bounds a domain; its image under 0 will
be denoted by Oj. The vertical segment between Eq and Do lies completely
in 0-1(Oi) and divides it into two domains, O0 and 0_1(Oi)\Qo.

Ha. Applying 0 once

Now we apply 0 to the whole picture. 0~1fe1) will be mapped onto the

vertical vX] through D\ — 0(Ao) and E\, where D\ lies above E\ because 0

preserves the orientation. If we just look at the part of T between D\ and E\
and that of vX] between E\ and D\, we are in the same topological situation

as before - together, they enclose the domain £2i. It does not matter that the

Figure 4

The first step of the iteration procedure
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part of F may curl and intersect vXx again. What is important, however, is

the fact that the area of the new Fl \ has increased :

I^IHQol + l^'^iAQol
We need an estimate from below for that additional area. To do so, we

choose a ray rq centred at Eo and pointing into the second quadrant, such that

(p~1 (uVl does not intersect the open half cone between 7*0 and {to} x [yo, +00) ;

see Figure 4. That this is possible follows from the above-mentioned "cone

condition" for a monotone twist map. We point out that the angle of the

corresponding half cone can be chosen independent of the base point on F.
We define Bo to be the first intersection point of / 0 and F before Do (with

respect to the order on T), and B'0 to be the last intersection point of F and fq
before Bq (with respect to the natural order on /q). The existence of Bo and

Bf0 is guaranteed by the same reasoning as in the proof of Lemma 2. Moreover,
Bf0 is different from Bo because, otherwise, F would have a self-intersection.
Note that it is possible that B'0 Eo.

We call Ao the domain bounded by the parts of F between Bq and D0,
and Eo and B'0, as well as r0 between B'0 and Bq, and vX() between Dq and

Eo. Then we have

l^iI > |Qo| + |Ao| •

IIb. Applying </> many times

Now we iterate the above procedure. For this, we set x2 7ty(0(£i))
and define A\ and é~x(Ei) as intersection points of <fi~l(vX2) and F in a

completely analogous way as before. After one application of f we obtain a

new domain Q2 whose area can be estimated by

I ^21 > |Qi I + |Ai I > |Qo| + I Ao I + |Ai I.

After n iterations, we obtain

n-1
I I ^ I ^0 I + I A/; I

k=0

Note that <j)n(F) F is fixed for all n and contained in some strip R x[-R,R].
Let us call E the horizontal diameter of the "fundamental part" 7|[0j] of F.
Then sup/7>0 |Q/?| < 2R L, and hence

|A„H0
as fi —> 00.
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lie. The graph property

From the previous discussion, we will now derive that T must have a

self-intersection, which contradicts the assumption that F is embedded. We

define the points Bn, B'n, Dn and En on F exactly as before. Call Tn the

part of r between Bn and Dn, and Y'n that between En and B'n (which may
reduce to the single point En =B'n). We distinguish two cases.

If dist(rw,r^) —> 0, then there are points Cn G Tn and C'n G T'n such

that dist(Cw, C'n) —» 0, and we may assume that all of them lie in [0,1] x R.
This means that (on subsequences) Cn and C'n converge to one and the same

point on T. This is a point of self-intersection, because the part of T between
Cn and C'n is always part of the boundary of a domain whose area is at

least \Ylo\-

Ignoring subsequences, the other case is when dist(rn,r^) > e > 0. Then

we can put an open ball of diameter e between Tn and T'n. The area of An is

at least that of the ball, intersected with the half cone between the rays from
En through Dn (the upper part of the vertical vXn and from En through Bn

(which is rn). Consider, in general, the area of the intersection of a half cone
with a ball whose centre lies inside that half cone; this area becomes smallest

if we put the centre of the ball right at the comer. In our situation, the crucial

point is that the angle at the comer En is fixed for all n. Therefore the area

of the above disk segment is a lower bound for all |An|. But this contradicts

\An I —» 0, so this case cannot happen.

Thus our assumption that T is not a graph leads to a contradiction.

lid. The Lipschitz property

We want to show that T is the graph of a Lipschitz function, whose

Lipschitz constant can be estimated in terms of the twist constant 6. Pick

any point P on T, and consider the ray rP constructed in the same way for
P, as ro had been constructed for Eq in Section IIa. In particular, the angle
between rP and the vertical through P depends only on 6. If T intersects rP

in a second point different from P, then the pre-image of the vertical through
<j)(P) must intersect T in a second point, too; see Figure 5. This follows from
the same arguments as in the proof of Lemma 2. But now one application of
4> shows that the vertical through <j>(P) intersects F in at least two points,
which is impossible since F is a graph. Therefore F cannot intersect any of
the rP's, hence it is a Lipschitz graph with Lipschitz constant only depending

on 6.
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Figure 5

Why T must be a Lipschitz graph

III. The second case

Finally, the same remark can be applied in the second of the two cases

from Lemma 1 where T contains a whole vertical interval. For we may take

P to be the midpoint of that interval and apply ç once - the vertical through

<ß(P) will intersect T in two isolated points D0 and £0, and we are back in

the first situation we already dealt with.

The proof of the theorem is complete.

3. Concluding remarks

For the sake of clarity, we did not prove the most general result that can
be obtained by our method. Here we just indicate possible generalizations.

First of all, our proof does not require the monotone twist condition but

only a sort of "cone condition on T". Namely, what we really need is the

requirement that all (pre-)images of verticals lie outside certain cones centred

at points on T ; we do not use the much more restrictive fact that they are

graphs. (This subtle point might be the reason why we have not succeeded in
proving a well-known generalization of Birkhoff's Theorem to boundaries of
invariant annuli [Fa, He, KH] by our method.)
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Secondly, Birkhoff's Theorem also holds true for invariant curves of
products (f)No> - of monotone twist mappings of the same sign. In general,
such products are not monotone twist mappings anymore. This generalization
follows immediately by our method if, even more generally, each <pn satisfies

the same "cone condition" on (</>«_ i o- • -o^XD. For every single fn presses
more area into a fold, and supw>0 |QW| < oo because T is mapped onto itself
again after N steps, instead of one. A proof along the traditional lines was

given by Mather only a couple of years ago [Ma3, Appendix].

Finally, we did not really need that f is a diffeomorphism. Everything can
also be formulated and proved for homeomorphisms that preserve Lebesgue

measure and satisfy the "cone condition".
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